Representation functions with different weights
Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 1-6
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For any given positive integer $k$, and
any set $A$ of nonnegative integers, let $r_{1, k}(A, n)$ denote
the number of solutions of the equation $n=a_1+ka_2$ with $a_1,
a_2\in A$. We prove that if $k,l$ are multiplicatively independent
integers, i.e., $\log{k}/\log{l}$ is irrational, then
there does not exist any set $A\subseteq \mathbb{N}$ such that
both $r_{1,k}(A,n)=r_{1,k}(\mathbb{N}\setminus A,n)$ and
$r_{1,l}(A,n)=r_{1,l}(\mathbb{N}\setminus A,n)$ hold for all
$n\geq n_0$. We also pose a conjecture and two problems for
further research.
Keywords:
given positive integer set nonnegative integers denote number solutions equation prove multiplicatively independent integers log log irrational there does exist set subseteq mathbb mathbb setminus mathbb setminus geq pose conjecture problems further research
Affiliations des auteurs :
Quan-Hui Yang  1
@article{10_4064_cm137_1_1,
author = {Quan-Hui Yang},
title = {Representation functions with different weights},
journal = {Colloquium Mathematicum},
pages = {1--6},
year = {2014},
volume = {137},
number = {1},
doi = {10.4064/cm137-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-1/}
}
Quan-Hui Yang. Representation functions with different weights. Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 1-6. doi: 10.4064/cm137-1-1
Cité par Sources :