Cofiniteness of torsion functors
of cofinite modules
Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 221-230
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $R$ be a Noetherian ring and $I$ an ideal of $R$. Let $M$ be an $I$-cofinite and $N$ a finitely generated $R$-module. It is shown that the $R$-modules ${\rm Tor}_i^R(N,M)$ are $I$-cofinite for all $i\geq 0$ whenever $\dim\mathop {\rm Supp}(M)\leq 1$ or $\dim\mathop {\rm Supp}(N)\leq 2$. This immediately implies that if $I$ has dimension one (i.e.,
$\dim R/I=1$) then the $R$-modules ${\rm Tor}_i^R(N,H^{j}_{I}(M))$ are $I$-cofinite for all $i, j\geq 0$. Also, we prove that if $R$ is local, then the $R$-modules ${\rm Tor}_i^R(N,M)$ are $I$-weakly cofinite for all $i\geq 0$ whenever $\dim\mathop {\rm Supp}(M)\leq 2$ or $\dim\mathop{\rm Supp}(N)\leq 3$. Finally, it is shown that the $R$-modules ${\rm Tor}_i^R(N,H^{j}_{I}(M))$ are $I$-weakly cofinite for all $i, j\geq 0$ whenever
$\dim R/I\leq 2$.
Keywords:
noetherian ring ideal i cofinite finitely generated r module shown r modules tor m i cofinite geq whenever dim mathop supp leq dim mathop supp leq immediately implies has dimension dim r modules tor h i cofinite geq prove local r modules tor m i weakly cofinite geq whenever dim mathop supp leq dim mathop supp leq finally shown r modules tor h i weakly cofinite geq whenever dim leq
Affiliations des auteurs :
Reza Naghipour 1 ; Kamal Bahmanpour 2 ; Imaneh Khalili Gorji 3
@article{10_4064_cm136_2_4,
author = {Reza Naghipour and Kamal Bahmanpour and Imaneh Khalili Gorji},
title = {Cofiniteness of torsion functors
of cofinite modules},
journal = {Colloquium Mathematicum},
pages = {221--230},
publisher = {mathdoc},
volume = {136},
number = {2},
year = {2014},
doi = {10.4064/cm136-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-4/}
}
TY - JOUR AU - Reza Naghipour AU - Kamal Bahmanpour AU - Imaneh Khalili Gorji TI - Cofiniteness of torsion functors of cofinite modules JO - Colloquium Mathematicum PY - 2014 SP - 221 EP - 230 VL - 136 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-4/ DO - 10.4064/cm136-2-4 LA - en ID - 10_4064_cm136_2_4 ER -
%0 Journal Article %A Reza Naghipour %A Kamal Bahmanpour %A Imaneh Khalili Gorji %T Cofiniteness of torsion functors of cofinite modules %J Colloquium Mathematicum %D 2014 %P 221-230 %V 136 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-4/ %R 10.4064/cm136-2-4 %G en %F 10_4064_cm136_2_4
Reza Naghipour; Kamal Bahmanpour; Imaneh Khalili Gorji. Cofiniteness of torsion functors of cofinite modules. Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 221-230. doi: 10.4064/cm136-2-4
Cité par Sources :