Cofiniteness of torsion functors of cofinite modules
Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 221-230.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $R$ be a Noetherian ring and $I$ an ideal of $R$. Let $M$ be an $I$-cofinite and $N$ a finitely generated $R$-module. It is shown that the $R$-modules ${\rm Tor}_i^R(N,M)$ are $I$-cofinite for all $i\geq 0$ whenever $\dim\mathop {\rm Supp}(M)\leq 1$ or $\dim\mathop {\rm Supp}(N)\leq 2$. This immediately implies that if $I$ has dimension one (i.e., $\dim R/I=1$) then the $R$-modules ${\rm Tor}_i^R(N,H^{j}_{I}(M))$ are $I$-cofinite for all $i, j\geq 0$. Also, we prove that if $R$ is local, then the $R$-modules ${\rm Tor}_i^R(N,M)$ are $I$-weakly cofinite for all $i\geq 0$ whenever $\dim\mathop {\rm Supp}(M)\leq 2$ or $\dim\mathop{\rm Supp}(N)\leq 3$. Finally, it is shown that the $R$-modules ${\rm Tor}_i^R(N,H^{j}_{I}(M))$ are $I$-weakly cofinite for all $i, j\geq 0$ whenever $\dim R/I\leq 2$.
DOI : 10.4064/cm136-2-4
Keywords: noetherian ring ideal i cofinite finitely generated r module shown r modules tor m i cofinite geq whenever dim mathop supp leq dim mathop supp leq immediately implies has dimension dim r modules tor h i cofinite geq prove local r modules tor m i weakly cofinite geq whenever dim mathop supp leq dim mathop supp leq finally shown r modules tor h i weakly cofinite geq whenever dim leq

Reza Naghipour 1 ; Kamal Bahmanpour 2 ; Imaneh Khalili Gorji 3

1 Department of Mathematics University of Tabriz Tabriz, Iran and School of Mathematics Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5746 Tehran, Iran
2 Faculty of Science University of Mohaghegh Ardabili Ardabil, Iran and School of Mathematics Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5746 Tehran, Iran
3 Department of Basic Sciences Imam Khomeini International University P.O. Box 34149-1-6818 Qazvin, Iran
@article{10_4064_cm136_2_4,
     author = {Reza Naghipour and Kamal Bahmanpour and Imaneh Khalili Gorji},
     title = {Cofiniteness of torsion functors
 of cofinite modules},
     journal = {Colloquium Mathematicum},
     pages = {221--230},
     publisher = {mathdoc},
     volume = {136},
     number = {2},
     year = {2014},
     doi = {10.4064/cm136-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-4/}
}
TY  - JOUR
AU  - Reza Naghipour
AU  - Kamal Bahmanpour
AU  - Imaneh Khalili Gorji
TI  - Cofiniteness of torsion functors
 of cofinite modules
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 221
EP  - 230
VL  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-4/
DO  - 10.4064/cm136-2-4
LA  - en
ID  - 10_4064_cm136_2_4
ER  - 
%0 Journal Article
%A Reza Naghipour
%A Kamal Bahmanpour
%A Imaneh Khalili Gorji
%T Cofiniteness of torsion functors
 of cofinite modules
%J Colloquium Mathematicum
%D 2014
%P 221-230
%V 136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-4/
%R 10.4064/cm136-2-4
%G en
%F 10_4064_cm136_2_4
Reza Naghipour; Kamal Bahmanpour; Imaneh Khalili Gorji. Cofiniteness of torsion functors
 of cofinite modules. Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 221-230. doi : 10.4064/cm136-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-4/

Cité par Sources :