On the existence of super-decomposable
pure-injective modules over
strongly simply connected algebras
of non-polynomial growth
Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 179-220
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Assume that $k$ is a field of characteristic different from 2. We show that if $\varGamma $ is a strongly simply connected $k$-algebra of non-polynomial growth, then there exists a special family of pointed $\varGamma $-modules, called an independent pair of dense chains of pointed modules. Then it follows by a result of Ziegler that $\varGamma $ admits a super-decomposable pure-injective module if $k$ is a countable field.
Keywords:
assume field characteristic different nbsp vargamma strongly simply connected k algebra non polynomial growth there exists special family pointed vargamma modules called independent pair dense chains pointed modules follows result ziegler vargamma admits super decomposable pure injective module countable field
Affiliations des auteurs :
Stanisław Kasjan 1 ; Grzegorz Pastuszak 2
@article{10_4064_cm136_2_3,
author = {Stanis{\l}aw Kasjan and Grzegorz Pastuszak},
title = {On the existence of super-decomposable
pure-injective modules over
strongly simply connected algebras
of non-polynomial growth},
journal = {Colloquium Mathematicum},
pages = {179--220},
publisher = {mathdoc},
volume = {136},
number = {2},
year = {2014},
doi = {10.4064/cm136-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-3/}
}
TY - JOUR AU - Stanisław Kasjan AU - Grzegorz Pastuszak TI - On the existence of super-decomposable pure-injective modules over strongly simply connected algebras of non-polynomial growth JO - Colloquium Mathematicum PY - 2014 SP - 179 EP - 220 VL - 136 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-3/ DO - 10.4064/cm136-2-3 LA - en ID - 10_4064_cm136_2_3 ER -
%0 Journal Article %A Stanisław Kasjan %A Grzegorz Pastuszak %T On the existence of super-decomposable pure-injective modules over strongly simply connected algebras of non-polynomial growth %J Colloquium Mathematicum %D 2014 %P 179-220 %V 136 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-3/ %R 10.4064/cm136-2-3 %G en %F 10_4064_cm136_2_3
Stanisław Kasjan; Grzegorz Pastuszak. On the existence of super-decomposable pure-injective modules over strongly simply connected algebras of non-polynomial growth. Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 179-220. doi: 10.4064/cm136-2-3
Cité par Sources :