Haar wavelets on the Lebesgue spaces of local fields of positive characteristic
Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 149-168.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct the Haar wavelets on a local field $K$ of positive characteristic and show that the Haar wavelet system forms an unconditional basis for $L^p(K)$, $1 p \infty $. We also prove that this system, normalized in $L^p(K)$, is a democratic basis of $L^p(K)$. This also proves that the Haar system is a greedy basis of $L^p(K)$ for $1 p \infty $.
DOI : 10.4064/cm136-2-1
Keywords: construct haar wavelets local field positive characteristic haar wavelet system forms unconditional basis infty prove system normalized democratic basis proves haar system greedy basis infty

Biswaranjan Behera 1

1 Statistics and Mathematics Unit Indian Statistical Institute 203 B. T. Road Kolkata, 700108, India
@article{10_4064_cm136_2_1,
     author = {Biswaranjan Behera},
     title = {Haar wavelets on the {Lebesgue} spaces of local fields of positive characteristic},
     journal = {Colloquium Mathematicum},
     pages = {149--168},
     publisher = {mathdoc},
     volume = {136},
     number = {2},
     year = {2014},
     doi = {10.4064/cm136-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-1/}
}
TY  - JOUR
AU  - Biswaranjan Behera
TI  - Haar wavelets on the Lebesgue spaces of local fields of positive characteristic
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 149
EP  - 168
VL  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-1/
DO  - 10.4064/cm136-2-1
LA  - en
ID  - 10_4064_cm136_2_1
ER  - 
%0 Journal Article
%A Biswaranjan Behera
%T Haar wavelets on the Lebesgue spaces of local fields of positive characteristic
%J Colloquium Mathematicum
%D 2014
%P 149-168
%V 136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-1/
%R 10.4064/cm136-2-1
%G en
%F 10_4064_cm136_2_1
Biswaranjan Behera. Haar wavelets on the Lebesgue spaces of local fields of positive characteristic. Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 149-168. doi : 10.4064/cm136-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-1/

Cité par Sources :