Haar wavelets on the Lebesgue spaces of local fields of positive characteristic
Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 149-168
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We construct the Haar wavelets on a local field $K$ of positive characteristic and show that the Haar wavelet system forms an unconditional basis for $L^p(K)$, $1 p \infty $. We also prove that this system, normalized in $L^p(K)$, is a democratic basis of $L^p(K)$. This also proves that the Haar system is a greedy basis of $L^p(K)$ for $1 p \infty $.
Keywords:
construct haar wavelets local field positive characteristic haar wavelet system forms unconditional basis infty prove system normalized democratic basis proves haar system greedy basis infty
Affiliations des auteurs :
Biswaranjan Behera  1
@article{10_4064_cm136_2_1,
author = {Biswaranjan Behera},
title = {Haar wavelets on the {Lebesgue} spaces of local fields of positive characteristic},
journal = {Colloquium Mathematicum},
pages = {149--168},
year = {2014},
volume = {136},
number = {2},
doi = {10.4064/cm136-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-1/}
}
TY - JOUR AU - Biswaranjan Behera TI - Haar wavelets on the Lebesgue spaces of local fields of positive characteristic JO - Colloquium Mathematicum PY - 2014 SP - 149 EP - 168 VL - 136 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-1/ DO - 10.4064/cm136-2-1 LA - en ID - 10_4064_cm136_2_1 ER -
Biswaranjan Behera. Haar wavelets on the Lebesgue spaces of local fields of positive characteristic. Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 149-168. doi: 10.4064/cm136-2-1
Cité par Sources :