A characterization of sequences with the minimum number of $k$-sums modulo $k$
Colloquium Mathematicum, Tome 136 (2014) no. 1, pp. 51-56.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be an additive abelian group of order $k$, and $S$ be a sequence over $G$ of length $k+r$, where $1\le r\le k-1$. We call the sum of $k$ terms of $S$ a $k$-sum. We show that if $0$ is not a $k$-sum, then the number of $k$-sums is at least $r+2$ except for $S$ containing only two distinct elements, in which case the number of $k$-sums equals $r+1$. This result improves the Bollobás–Leader theorem, which states that there are at least $r+1$ $k$-sums if 0 is not a $k$-sum.
DOI : 10.4064/cm136-1-5
Keywords: additive abelian group order sequence length where k call sum terms k sum k sum number k sums least except containing only distinct elements which number k sums equals result improves bollob leader theorem which states there least k sums k sum

Xingwu Xia 1 ; Yongke Qu 1 ; Guoyou Qian 2

1 Department of Mathematics Luoyang Normal University LuoYang 471022, P.R. China
2 Mathematical College Sichuan University Chengdu 610064, P.R. China
@article{10_4064_cm136_1_5,
     author = {Xingwu Xia and Yongke Qu and Guoyou Qian},
     title = {A characterization of sequences with the minimum number of $k$-sums modulo $k$},
     journal = {Colloquium Mathematicum},
     pages = {51--56},
     publisher = {mathdoc},
     volume = {136},
     number = {1},
     year = {2014},
     doi = {10.4064/cm136-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-5/}
}
TY  - JOUR
AU  - Xingwu Xia
AU  - Yongke Qu
AU  - Guoyou Qian
TI  - A characterization of sequences with the minimum number of $k$-sums modulo $k$
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 51
EP  - 56
VL  - 136
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-5/
DO  - 10.4064/cm136-1-5
LA  - en
ID  - 10_4064_cm136_1_5
ER  - 
%0 Journal Article
%A Xingwu Xia
%A Yongke Qu
%A Guoyou Qian
%T A characterization of sequences with the minimum number of $k$-sums modulo $k$
%J Colloquium Mathematicum
%D 2014
%P 51-56
%V 136
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-5/
%R 10.4064/cm136-1-5
%G en
%F 10_4064_cm136_1_5
Xingwu Xia; Yongke Qu; Guoyou Qian. A characterization of sequences with the minimum number of $k$-sums modulo $k$. Colloquium Mathematicum, Tome 136 (2014) no. 1, pp. 51-56. doi : 10.4064/cm136-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-5/

Cité par Sources :