Weighted sharp maximal function inequalities
and boundedness of a linear operator
associated to a singular integral operator
with non-smooth kernel
Colloquium Mathematicum, Tome 135 (2014) no. 2, pp. 149-170
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We establish weighted sharp maximal function inequalities for a linear operator associated to a singular integral operator with non-smooth kernel. As an application, we obtain the boundedness of a commutator on weighted Lebesgue spaces.
Keywords:
establish weighted sharp maximal function inequalities linear operator associated singular integral operator non smooth kernel application obtain boundedness commutator weighted lebesgue spaces
Affiliations des auteurs :
Dazhao Chen 1
@article{10_4064_cm135_2_1,
author = {Dazhao Chen},
title = {Weighted sharp maximal function inequalities
and boundedness of a linear operator
associated to a singular integral operator
with non-smooth kernel},
journal = {Colloquium Mathematicum},
pages = {149--170},
publisher = {mathdoc},
volume = {135},
number = {2},
year = {2014},
doi = {10.4064/cm135-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm135-2-1/}
}
TY - JOUR AU - Dazhao Chen TI - Weighted sharp maximal function inequalities and boundedness of a linear operator associated to a singular integral operator with non-smooth kernel JO - Colloquium Mathematicum PY - 2014 SP - 149 EP - 170 VL - 135 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm135-2-1/ DO - 10.4064/cm135-2-1 LA - en ID - 10_4064_cm135_2_1 ER -
%0 Journal Article %A Dazhao Chen %T Weighted sharp maximal function inequalities and boundedness of a linear operator associated to a singular integral operator with non-smooth kernel %J Colloquium Mathematicum %D 2014 %P 149-170 %V 135 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm135-2-1/ %R 10.4064/cm135-2-1 %G en %F 10_4064_cm135_2_1
Dazhao Chen. Weighted sharp maximal function inequalities and boundedness of a linear operator associated to a singular integral operator with non-smooth kernel. Colloquium Mathematicum, Tome 135 (2014) no. 2, pp. 149-170. doi: 10.4064/cm135-2-1
Cité par Sources :