Compactly supported cohomology
of systolic $3$-pseudomanifolds
Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 103-112
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the second group of cohomology with compact supports is nontrivial for three-dimensional systolic pseudomanifolds. It follows that groups acting geometrically on such spaces are not Poincaré duality groups.
Keywords:
second group cohomology compact supports nontrivial three dimensional systolic pseudomanifolds follows groups acting geometrically spaces poincar duality groups
Affiliations des auteurs :
Roger Gómez-Ortells 1
@article{10_4064_cm135_1_8,
author = {Roger G\'omez-Ortells},
title = {Compactly supported cohomology
of systolic $3$-pseudomanifolds},
journal = {Colloquium Mathematicum},
pages = {103--112},
publisher = {mathdoc},
volume = {135},
number = {1},
year = {2014},
doi = {10.4064/cm135-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-8/}
}
TY - JOUR AU - Roger Gómez-Ortells TI - Compactly supported cohomology of systolic $3$-pseudomanifolds JO - Colloquium Mathematicum PY - 2014 SP - 103 EP - 112 VL - 135 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-8/ DO - 10.4064/cm135-1-8 LA - en ID - 10_4064_cm135_1_8 ER -
Roger Gómez-Ortells. Compactly supported cohomology of systolic $3$-pseudomanifolds. Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 103-112. doi: 10.4064/cm135-1-8
Cité par Sources :