On isometries of the symmetric space $P_{1}(3,\mathbb {R})$
Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 85-102
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We classify the isometries in the non-identity component of the whole isometry group of the symmetric space of positive $3\times 3$ matrices of determinant 1: we determine the translation lengths, minimal spaces and fixed points at infinity.
Keywords:
classify isometries non identity component whole isometry group symmetric space positive times matrices determinant determine translation lengths minimal spaces fixed points infinity
Affiliations des auteurs :
Gašper Zadnik 1
@article{10_4064_cm135_1_7,
author = {Ga\v{s}per Zadnik},
title = {On isometries of the symmetric space $P_{1}(3,\mathbb {R})$},
journal = {Colloquium Mathematicum},
pages = {85--102},
publisher = {mathdoc},
volume = {135},
number = {1},
year = {2014},
doi = {10.4064/cm135-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-7/}
}
Gašper Zadnik. On isometries of the symmetric space $P_{1}(3,\mathbb {R})$. Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 85-102. doi: 10.4064/cm135-1-7
Cité par Sources :