On continuity at zero of the maximal operator
for a semifinite measure
Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 79-84
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a sequence of linear maps defined on a Banach space with values in the space of measurable functions on a semifinite measure space, we examine the behavior of its maximal operator at zero.
Keywords:
sequence linear maps defined banach space values space measurable functions semifinite measure space examine behavior its maximal operator zero
Affiliations des auteurs :
Semyon Litvinov 1
@article{10_4064_cm135_1_6,
author = {Semyon Litvinov},
title = {On continuity at zero of the maximal operator
for a semifinite measure},
journal = {Colloquium Mathematicum},
pages = {79--84},
publisher = {mathdoc},
volume = {135},
number = {1},
year = {2014},
doi = {10.4064/cm135-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-6/}
}
TY - JOUR AU - Semyon Litvinov TI - On continuity at zero of the maximal operator for a semifinite measure JO - Colloquium Mathematicum PY - 2014 SP - 79 EP - 84 VL - 135 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-6/ DO - 10.4064/cm135-1-6 LA - en ID - 10_4064_cm135_1_6 ER -
Semyon Litvinov. On continuity at zero of the maximal operator for a semifinite measure. Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 79-84. doi: 10.4064/cm135-1-6
Cité par Sources :