Potential theory of hyperbolic Brownian motion in tube domains
Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 27-52.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X=\{X(t);\,t\geq 0\}$ be the hyperbolic Brownian motion on the real hyperbolic space $\mathbb H^n=\{x\in \mathbb R^n:x_n>0\}$. We study the Green function and the Poisson kernel of tube domains of the form $D\times (0,\infty )\subset \mathbb H^n$, where $D$ is any Lipschitz domain in $\mathbb R^{n-1}$. We show how to obtain formulas for these functions using analogous objects for the standard Brownian motion in $\mathbb R^{2n}$. We give formulas and uniform estimates for the set $D_a=\{x\in \mathbb H^n:x_1\in (0,a)\}$. The constants in the estimates depend only on the dimension of the space.
DOI : 10.4064/cm135-1-3
Keywords: geq hyperbolic brownian motion real hyperbolic space mathbb mathbb n study green function poisson kernel tube domains form times infty subset mathbb where lipschitz domain mathbb n obtain formulas these functions using analogous objects standard brownian motion mathbb formulas uniform estimates set mathbb constants estimates depend only dimension space

Grzegorz Serafin 1

1 Institute of Mathematics and Computer Science Wrocław University of Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland
@article{10_4064_cm135_1_3,
     author = {Grzegorz Serafin},
     title = {Potential theory of hyperbolic {Brownian} motion
 in tube domains},
     journal = {Colloquium Mathematicum},
     pages = {27--52},
     publisher = {mathdoc},
     volume = {135},
     number = {1},
     year = {2014},
     doi = {10.4064/cm135-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-3/}
}
TY  - JOUR
AU  - Grzegorz Serafin
TI  - Potential theory of hyperbolic Brownian motion
 in tube domains
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 27
EP  - 52
VL  - 135
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-3/
DO  - 10.4064/cm135-1-3
LA  - en
ID  - 10_4064_cm135_1_3
ER  - 
%0 Journal Article
%A Grzegorz Serafin
%T Potential theory of hyperbolic Brownian motion
 in tube domains
%J Colloquium Mathematicum
%D 2014
%P 27-52
%V 135
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-3/
%R 10.4064/cm135-1-3
%G en
%F 10_4064_cm135_1_3
Grzegorz Serafin. Potential theory of hyperbolic Brownian motion
 in tube domains. Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 27-52. doi : 10.4064/cm135-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-3/

Cité par Sources :