Potential theory of hyperbolic Brownian motion
in tube domains
Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 27-52
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $X=\{X(t);\,t\geq 0\}$ be the hyperbolic Brownian motion on the real hyperbolic space $\mathbb H^n=\{x\in \mathbb R^n:x_n>0\}$. We study the Green function and the Poisson kernel of tube domains of the form $D\times (0,\infty )\subset \mathbb H^n$, where $D$ is any Lipschitz domain in $\mathbb R^{n-1}$. We show how to obtain formulas for these functions using analogous objects for the standard Brownian motion in $\mathbb R^{2n}$. We give formulas and uniform estimates for the set $D_a=\{x\in \mathbb H^n:x_1\in (0,a)\}$. The constants in the estimates depend only on the dimension of the space.
Keywords:
geq hyperbolic brownian motion real hyperbolic space mathbb mathbb n study green function poisson kernel tube domains form times infty subset mathbb where lipschitz domain mathbb n obtain formulas these functions using analogous objects standard brownian motion mathbb formulas uniform estimates set mathbb constants estimates depend only dimension space
Affiliations des auteurs :
Grzegorz Serafin  1
@article{10_4064_cm135_1_3,
author = {Grzegorz Serafin},
title = {Potential theory of hyperbolic {Brownian} motion
in tube domains},
journal = {Colloquium Mathematicum},
pages = {27--52},
year = {2014},
volume = {135},
number = {1},
doi = {10.4064/cm135-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-3/}
}
Grzegorz Serafin. Potential theory of hyperbolic Brownian motion in tube domains. Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 27-52. doi: 10.4064/cm135-1-3
Cité par Sources :