Prime and semiprime rings with symmetric skew $n$-derivations
Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 245-253.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $n\ge 3$ be a positive integer. We study symmetric skew $n$-derivations of prime and semiprime rings and prove that under some certain conditions a prime ring with a nonzero symmetric skew $n$-derivation has to be commutative.
DOI : 10.4064/cm134-2-8
Keywords: positive integer study symmetric skew n derivations prime semiprime rings prove under certain conditions prime ring nonzero symmetric skew n derivation has commutative

Ajda Fošner 1

1 Faculty of Management University of Primorska Cankarjeva 5 SI-6104 Koper, Slovenia
@article{10_4064_cm134_2_8,
     author = {Ajda Fo\v{s}ner},
     title = {Prime and semiprime rings with symmetric skew $n$-derivations},
     journal = {Colloquium Mathematicum},
     pages = {245--253},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {2014},
     doi = {10.4064/cm134-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-8/}
}
TY  - JOUR
AU  - Ajda Fošner
TI  - Prime and semiprime rings with symmetric skew $n$-derivations
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 245
EP  - 253
VL  - 134
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-8/
DO  - 10.4064/cm134-2-8
LA  - en
ID  - 10_4064_cm134_2_8
ER  - 
%0 Journal Article
%A Ajda Fošner
%T Prime and semiprime rings with symmetric skew $n$-derivations
%J Colloquium Mathematicum
%D 2014
%P 245-253
%V 134
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-8/
%R 10.4064/cm134-2-8
%G en
%F 10_4064_cm134_2_8
Ajda Fošner. Prime and semiprime rings with symmetric skew $n$-derivations. Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 245-253. doi : 10.4064/cm134-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-8/

Cité par Sources :