Prime and semiprime rings with symmetric skew $n$-derivations
Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 245-253
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $n\ge 3$ be a positive integer. We study symmetric skew $n$-derivations of prime and semiprime rings and prove that under some certain conditions a prime ring with a nonzero symmetric skew $n$-derivation has to be commutative.
Keywords:
positive integer study symmetric skew n derivations prime semiprime rings prove under certain conditions prime ring nonzero symmetric skew n derivation has commutative
Affiliations des auteurs :
Ajda Fošner 1
@article{10_4064_cm134_2_8,
author = {Ajda Fo\v{s}ner},
title = {Prime and semiprime rings with symmetric skew $n$-derivations},
journal = {Colloquium Mathematicum},
pages = {245--253},
publisher = {mathdoc},
volume = {134},
number = {2},
year = {2014},
doi = {10.4064/cm134-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-8/}
}
Ajda Fošner. Prime and semiprime rings with symmetric skew $n$-derivations. Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 245-253. doi: 10.4064/cm134-2-8
Cité par Sources :