Conformal $\mathcal {F}$-harmonic maps for Finsler manifolds
Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 227-234
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
By introducing the ${\mathcal F}$-stress energy tensor of maps from an $n$-dimensional Finsler manifold to a Finsler manifold and assuming that $(n-2){\mathcal F(t)}'-2t{\mathcal F(t)}''\not =0$ for any $t\in [0, \infty )$, we prove that any conformal strongly ${\mathcal F}$-harmonic map must be homothetic. This assertion generalizes the results by He and Shen for harmonics map and by Ara for the Riemannian case.
Keywords:
introducing mathcal stress energy tensor maps n dimensional finsler manifold finsler manifold assuming n mathcal mathcal infty prove conformal strongly mathcal harmonic map homothetic assertion generalizes results shen harmonics map ara riemannian
Affiliations des auteurs :
Jintang Li 1
@article{10_4064_cm134_2_6,
author = {Jintang Li},
title = {Conformal $\mathcal {F}$-harmonic maps for {Finsler} manifolds},
journal = {Colloquium Mathematicum},
pages = {227--234},
year = {2014},
volume = {134},
number = {2},
doi = {10.4064/cm134-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-6/}
}
Jintang Li. Conformal $\mathcal {F}$-harmonic maps for Finsler manifolds. Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 227-234. doi: 10.4064/cm134-2-6
Cité par Sources :