Conformal $\mathcal {F}$-harmonic maps for Finsler manifolds
Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 227-234.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

By introducing the ${\mathcal F}$-stress energy tensor of maps from an $n$-dimensional Finsler manifold to a Finsler manifold and assuming that $(n-2){\mathcal F(t)}'-2t{\mathcal F(t)}''\not =0$ for any $t\in [0, \infty )$, we prove that any conformal strongly ${\mathcal F}$-harmonic map must be homothetic. This assertion generalizes the results by He and Shen for harmonics map and by Ara for the Riemannian case.
DOI : 10.4064/cm134-2-6
Keywords: introducing mathcal stress energy tensor maps n dimensional finsler manifold finsler manifold assuming n mathcal mathcal infty prove conformal strongly mathcal harmonic map homothetic assertion generalizes results shen harmonics map ara riemannian

Jintang Li 1

1 School of Mathematical Sciences Xiamen University 361005 Xiamen, Fujian, China
@article{10_4064_cm134_2_6,
     author = {Jintang Li},
     title = {Conformal $\mathcal {F}$-harmonic maps for {Finsler} manifolds},
     journal = {Colloquium Mathematicum},
     pages = {227--234},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {2014},
     doi = {10.4064/cm134-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-6/}
}
TY  - JOUR
AU  - Jintang Li
TI  - Conformal $\mathcal {F}$-harmonic maps for Finsler manifolds
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 227
EP  - 234
VL  - 134
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-6/
DO  - 10.4064/cm134-2-6
LA  - en
ID  - 10_4064_cm134_2_6
ER  - 
%0 Journal Article
%A Jintang Li
%T Conformal $\mathcal {F}$-harmonic maps for Finsler manifolds
%J Colloquium Mathematicum
%D 2014
%P 227-234
%V 134
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-6/
%R 10.4064/cm134-2-6
%G en
%F 10_4064_cm134_2_6
Jintang Li. Conformal $\mathcal {F}$-harmonic maps for Finsler manifolds. Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 227-234. doi : 10.4064/cm134-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-6/

Cité par Sources :