Around ${\rm cofin}$
Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 211-225
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show the consistency of “there is a nice $\sigma $-ideal ${\mathcal I}$ on the reals with ${\rm add}({\mathcal I})=\aleph _1$ which cannot be represented as the union of a strictly increasing sequence of length $\omega _1$ of $\sigma $-subideals”. This answers [Borodulin-Nadzieja and Głąb, Math. Logic Quart. 57 (2011), 582–590, Problem 6.2(ii)].
Keywords:
consistency there nice sigma ideal mathcal reals mathcal aleph which cannot represented union strictly increasing sequence length omega sigma subideals answers borodulin nadzieja math logic quart problem
Affiliations des auteurs :
Andrzej Rosłanowski 1 ; Saharon Shelah 2
@article{10_4064_cm134_2_5,
author = {Andrzej Ros{\l}anowski and Saharon Shelah},
title = {Around ${\rm cofin}$},
journal = {Colloquium Mathematicum},
pages = {211--225},
publisher = {mathdoc},
volume = {134},
number = {2},
year = {2014},
doi = {10.4064/cm134-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-5/}
}
Andrzej Rosłanowski; Saharon Shelah. Around ${\rm cofin}$. Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 211-225. doi: 10.4064/cm134-2-5
Cité par Sources :