Expansions of binary recurrences in the additive base formed by the number of divisors of the factorial
Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 193-209.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We note that every positive integer $N$ has a representation as a sum of distinct members of the sequence $\{d(n!)\}_{n\ge 1}$, where $d(m)$ is the number of divisors of $m$. When $N$ is a member of a binary recurrence ${\bf u}=\{u_n\}_{n\ge 1}$ satisfying some mild technical conditions, we show that the number of such summands tends to infinity with $n$ at a rate of at least $c_1\log n/\!\log\log n$ for some positive constant $c_1$. We also compute all the Fibonacci numbers of the form $d(m!)$ and $d(m_1!)+d(m_2)!$ for some positive integers $m,m_1,m_2$.
DOI : 10.4064/cm134-2-4
Keywords: note every positive integer has representation sum distinct members sequence where number divisors member binary recurrence satisfying mild technical conditions number summands tends infinity rate least log log log positive constant compute fibonacci numbers form positive integers

Florian Luca 1 ; Augustine O. Munagi 2

1 Mathematical Institute UNAM Juriquilla Juriquilla, 76230 Santiago de Querétaro Querétaro de Arteaga, México and School of Mathematics University of the Witwatersrand P.O. Box Wits 2050 Johannesburg, South Africa
2 The John Knopfmacher Centre for Applicable Analysis and Number Theory University of the Witwatersrand P.O. Box Wits 2050 Johannesburg, South Africa
@article{10_4064_cm134_2_4,
     author = {Florian Luca and Augustine O. Munagi},
     title = {Expansions of binary recurrences in the
 additive base formed by the number of
 divisors of the factorial},
     journal = {Colloquium Mathematicum},
     pages = {193--209},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {2014},
     doi = {10.4064/cm134-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-4/}
}
TY  - JOUR
AU  - Florian Luca
AU  - Augustine O. Munagi
TI  - Expansions of binary recurrences in the
 additive base formed by the number of
 divisors of the factorial
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 193
EP  - 209
VL  - 134
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-4/
DO  - 10.4064/cm134-2-4
LA  - en
ID  - 10_4064_cm134_2_4
ER  - 
%0 Journal Article
%A Florian Luca
%A Augustine O. Munagi
%T Expansions of binary recurrences in the
 additive base formed by the number of
 divisors of the factorial
%J Colloquium Mathematicum
%D 2014
%P 193-209
%V 134
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-4/
%R 10.4064/cm134-2-4
%G en
%F 10_4064_cm134_2_4
Florian Luca; Augustine O. Munagi. Expansions of binary recurrences in the
 additive base formed by the number of
 divisors of the factorial. Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 193-209. doi : 10.4064/cm134-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-4/

Cité par Sources :