The reaping and splitting numbers of nice ideals
Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 179-192.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We examine the splitting number $\mathfrak {s}(\mathbf {B})$ and the reaping number $\mathfrak {r}(\mathbf {{B}})$ of quotient Boolean algebras $\mathbf {B}=\mathcal {P}(\omega )/\mathcal {I}$ where $\mathcal {I}$ is an $F_\sigma $ ideal or an analytic P-ideal. For instance we prove that under Martin's Axiom $\mathfrak {s}(\mathcal {P}(\omega )/\mathcal {I})=\mathfrak {c}$ for all $F_\sigma $ ideals $\mathcal {I}$ and for all analytic P-ideals $\mathcal {I}$ with the $\textrm {BW}$ property (and one cannot drop the $\textrm {BW}$ assumption). On the other hand under Martin's Axiom $\mathfrak {r}(\mathcal {P}(\omega )/\mathcal {I})=\mathfrak {c}$ for all $F_\sigma $ ideals and all analytic P-ideals $\mathcal {I}$ (in this case we do not need the $\textrm {BW}$ property). We also provide applications of these characteristics to the ideal convergence of sequences of real-valued functions defined on the reals.
DOI : 10.4064/cm134-2-3
Keywords: examine splitting number mathfrak mathbf reaping number mathfrak mathbf quotient boolean algebras mathbf mathcal omega mathcal where mathcal sigma ideal analytic p ideal instance prove under martins axiom mathfrak mathcal omega mathcal mathfrak sigma ideals mathcal analytic p ideals mathcal textrm property cannot drop textrm assumption other under martins axiom mathfrak mathcal omega mathcal mathfrak sigma ideals analytic p ideals mathcal textrm property provide applications these characteristics ideal convergence sequences real valued functions defined reals

Rafał Filipów 1

1 Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland
@article{10_4064_cm134_2_3,
     author = {Rafa{\l} Filip\'ow},
     title = {The reaping and splitting numbers of nice ideals},
     journal = {Colloquium Mathematicum},
     pages = {179--192},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {2014},
     doi = {10.4064/cm134-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-3/}
}
TY  - JOUR
AU  - Rafał Filipów
TI  - The reaping and splitting numbers of nice ideals
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 179
EP  - 192
VL  - 134
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-3/
DO  - 10.4064/cm134-2-3
LA  - en
ID  - 10_4064_cm134_2_3
ER  - 
%0 Journal Article
%A Rafał Filipów
%T The reaping and splitting numbers of nice ideals
%J Colloquium Mathematicum
%D 2014
%P 179-192
%V 134
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-3/
%R 10.4064/cm134-2-3
%G en
%F 10_4064_cm134_2_3
Rafał Filipów. The reaping and splitting numbers of nice ideals. Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 179-192. doi : 10.4064/cm134-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-3/

Cité par Sources :