Determination of the diffusion operator on an interval
Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 165-178.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The inverse problem of spectral analysis for the diffusion operator with quasiperiodic boundary conditions is considered. A uniqueness theorem is proved, a solution algorithm is presented, and sufficient conditions for the solvability of the inverse problem are obtained.
DOI : 10.4064/cm134-2-2
Keywords: inverse problem spectral analysis diffusion operator quasiperiodic boundary conditions considered uniqueness theorem proved solution algorithm presented sufficient conditions solvability inverse problem obtained

Ibrahim M. Nabiev 1

1 Department of Applied Mathematics Baku State University 23 Z. Khalilov St. AZ1148, Baku, Azerbaijan and Institute of Mathematics and Mechanics of NAS of Azerbaijan 9 B. Vahabzadeh St. AZ1141, Baku, Azerbaijan
@article{10_4064_cm134_2_2,
     author = {Ibrahim M. Nabiev},
     title = {Determination of the diffusion operator on an interval},
     journal = {Colloquium Mathematicum},
     pages = {165--178},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {2014},
     doi = {10.4064/cm134-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-2/}
}
TY  - JOUR
AU  - Ibrahim M. Nabiev
TI  - Determination of the diffusion operator on an interval
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 165
EP  - 178
VL  - 134
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-2/
DO  - 10.4064/cm134-2-2
LA  - en
ID  - 10_4064_cm134_2_2
ER  - 
%0 Journal Article
%A Ibrahim M. Nabiev
%T Determination of the diffusion operator on an interval
%J Colloquium Mathematicum
%D 2014
%P 165-178
%V 134
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-2/
%R 10.4064/cm134-2-2
%G en
%F 10_4064_cm134_2_2
Ibrahim M. Nabiev. Determination of the diffusion operator on an interval. Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 165-178. doi : 10.4064/cm134-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-2/

Cité par Sources :