The almost Daugavet property and translation-invariant subspaces
Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 151-163
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be a metrizable, compact abelian group and let $\varLambda$ be a
subset of its dual group $\widehat G$. We show that $C_\varLambda(G)$ has
the almost Daugavet property if and only if $\varLambda$ is an infinite
set, and that $L^1_\varLambda(G)$ has the almost Daugavet property if and
only if $\varLambda$ is not a $\varLambda(1)$ set.
Keywords:
metrizable compact abelian group varlambda subset its dual group widehat varlambda has almost daugavet property only varlambda infinite set varlambda has almost daugavet property only varlambda varlambda set
Affiliations des auteurs :
Simon Lücking  1
@article{10_4064_cm134_2_1,
author = {Simon L\"ucking},
title = {The almost {Daugavet} property and translation-invariant subspaces},
journal = {Colloquium Mathematicum},
pages = {151--163},
year = {2014},
volume = {134},
number = {2},
doi = {10.4064/cm134-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-1/}
}
Simon Lücking. The almost Daugavet property and translation-invariant subspaces. Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 151-163. doi: 10.4064/cm134-2-1
Cité par Sources :