The almost Daugavet property and translation-invariant subspaces
Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 151-163.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a metrizable, compact abelian group and let $\varLambda$ be a subset of its dual group $\widehat G$. We show that $C_\varLambda(G)$ has the almost Daugavet property if and only if $\varLambda$ is an infinite set, and that $L^1_\varLambda(G)$ has the almost Daugavet property if and only if $\varLambda$ is not a $\varLambda(1)$ set.
DOI : 10.4064/cm134-2-1
Keywords: metrizable compact abelian group varlambda subset its dual group widehat varlambda has almost daugavet property only varlambda infinite set varlambda has almost daugavet property only varlambda varlambda set

Simon Lücking 1

1 Department of Mathematics Freie Universität Berlin Arnimallee 6 14195 Berlin, Germany
@article{10_4064_cm134_2_1,
     author = {Simon L\"ucking},
     title = {The almost {Daugavet} property and translation-invariant subspaces},
     journal = {Colloquium Mathematicum},
     pages = {151--163},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {2014},
     doi = {10.4064/cm134-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-1/}
}
TY  - JOUR
AU  - Simon Lücking
TI  - The almost Daugavet property and translation-invariant subspaces
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 151
EP  - 163
VL  - 134
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-1/
DO  - 10.4064/cm134-2-1
LA  - en
ID  - 10_4064_cm134_2_1
ER  - 
%0 Journal Article
%A Simon Lücking
%T The almost Daugavet property and translation-invariant subspaces
%J Colloquium Mathematicum
%D 2014
%P 151-163
%V 134
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-1/
%R 10.4064/cm134-2-1
%G en
%F 10_4064_cm134_2_1
Simon Lücking. The almost Daugavet property and translation-invariant subspaces. Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 151-163. doi : 10.4064/cm134-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-1/

Cité par Sources :