On weakly Gibson $F_{\sigma} $-measurable mappings
Colloquium Mathematicum, Tome 133 (2013) no. 2, pp. 211-219.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A function $f:X\to Y$ between topological spaces is said to be a weakly Gibson function if $f(\overline {U})\subseteq \overline {f(U)}$ for any open connected set $U\subseteq X$. We prove that if $X$ is a locally connected hereditarily Baire space and $Y$ is a $T_1$-space then an $F_\sigma $-measurable mapping $f:X\to Y$ is weakly Gibson if and only if for any connected set $C\subseteq X$ with dense connected interior the image $f(C)$ is connected. Moreover, we show that each weakly Gibson $F_\sigma $-measurable mapping $f:\mathbb R^n\to Y$, where $Y$ is a $T_1$-space, has a connected graph.
DOI : 10.4064/cm133-2-7
Keywords: function between topological spaces said weakly gibson function overline subseteq overline connected set subseteq prove locally connected hereditarily baire space space sigma measurable mapping weakly gibson only connected set subseteq dense connected interior image connected moreover each weakly gibson sigma measurable mapping mathbb where space has connected graph

Olena Karlova 1 ; Volodymyr Mykhaylyuk 1

1 Chernivtsi National University Department of Mathematical Analysis 58012 Chernivtsi, Ukraine
@article{10_4064_cm133_2_7,
     author = {Olena Karlova and Volodymyr Mykhaylyuk},
     title = {On weakly {Gibson} $F_{\sigma} $-measurable mappings},
     journal = {Colloquium Mathematicum},
     pages = {211--219},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {2013},
     doi = {10.4064/cm133-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-7/}
}
TY  - JOUR
AU  - Olena Karlova
AU  - Volodymyr Mykhaylyuk
TI  - On weakly Gibson $F_{\sigma} $-measurable mappings
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 211
EP  - 219
VL  - 133
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-7/
DO  - 10.4064/cm133-2-7
LA  - en
ID  - 10_4064_cm133_2_7
ER  - 
%0 Journal Article
%A Olena Karlova
%A Volodymyr Mykhaylyuk
%T On weakly Gibson $F_{\sigma} $-measurable mappings
%J Colloquium Mathematicum
%D 2013
%P 211-219
%V 133
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-7/
%R 10.4064/cm133-2-7
%G en
%F 10_4064_cm133_2_7
Olena Karlova; Volodymyr Mykhaylyuk. On weakly Gibson $F_{\sigma} $-measurable mappings. Colloquium Mathematicum, Tome 133 (2013) no. 2, pp. 211-219. doi : 10.4064/cm133-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-7/

Cité par Sources :