On countable families of sets without the Baire property
Colloquium Mathematicum, Tome 133 (2013) no. 2, pp. 179-187.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We suggest a method of constructing decompositions of a topological space $X$ having an open subset homeomorphic to the space ($\mathbb R^n, \tau )$, where $n$ is an integer $\geq 1$ and $\tau $ is any admissible extension of the Euclidean topology of $\mathbb R^n$ (in particular, $X$ can be a finite-dimensional separable metrizable manifold), into a countable family $\mathcal F$ of sets (dense in $X$ and zero-dimensional in the case of manifolds) such that the union of each non-empty proper subfamily of $\mathcal F$ does not have the Baire property in $X$.
DOI : 10.4064/cm133-2-4
Keywords: suggest method constructing decompositions topological space having subset homeomorphic space mathbb tau where integer geq tau admissible extension euclidean topology mathbb particular finite dimensional separable metrizable manifold countable family mathcal sets dense zero dimensional manifolds union each non empty proper subfamily mathcal does have baire property

Mats Aigner 1 ; Vitalij A. Chatyrko 1 ; Venuste Nyagahakwa 2

1 Department of Mathematics Linköping University 581 83 Linköping, Sweden
2 Department of Mathematics National University of Rwanda Butare, Rwanda
@article{10_4064_cm133_2_4,
     author = {Mats Aigner and Vitalij A. Chatyrko and Venuste Nyagahakwa},
     title = {On countable families of sets without the {Baire} property},
     journal = {Colloquium Mathematicum},
     pages = {179--187},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {2013},
     doi = {10.4064/cm133-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-4/}
}
TY  - JOUR
AU  - Mats Aigner
AU  - Vitalij A. Chatyrko
AU  - Venuste Nyagahakwa
TI  - On countable families of sets without the Baire property
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 179
EP  - 187
VL  - 133
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-4/
DO  - 10.4064/cm133-2-4
LA  - en
ID  - 10_4064_cm133_2_4
ER  - 
%0 Journal Article
%A Mats Aigner
%A Vitalij A. Chatyrko
%A Venuste Nyagahakwa
%T On countable families of sets without the Baire property
%J Colloquium Mathematicum
%D 2013
%P 179-187
%V 133
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-4/
%R 10.4064/cm133-2-4
%G en
%F 10_4064_cm133_2_4
Mats Aigner; Vitalij A. Chatyrko; Venuste Nyagahakwa. On countable families of sets without the Baire property. Colloquium Mathematicum, Tome 133 (2013) no. 2, pp. 179-187. doi : 10.4064/cm133-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-4/

Cité par Sources :