Properties of extremal sequences for the Bellman function of the dyadic maximal operator
Colloquium Mathematicum, Tome 133 (2013) no. 2, pp. 273-282.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a necessary condition that has every extremal sequence for the Bellman function of the dyadic maximal operator. This implies the weak-$L^p$ uniqueness for such a sequence.
DOI : 10.4064/cm133-2-13
Keywords: prove necessary condition has every extremal sequence bellman function dyadic maximal operator implies weak l uniqueness sequence

Eleftherios N. Nikolidakis 1

1 Department of Mathematics National and Kapodistrian University of Athens Panepistimioypolis 15784, Athens, Greece
@article{10_4064_cm133_2_13,
     author = {Eleftherios N. Nikolidakis},
     title = {Properties of extremal sequences for the {Bellman} function of the dyadic maximal operator},
     journal = {Colloquium Mathematicum},
     pages = {273--282},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {2013},
     doi = {10.4064/cm133-2-13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-13/}
}
TY  - JOUR
AU  - Eleftherios N. Nikolidakis
TI  - Properties of extremal sequences for the Bellman function of the dyadic maximal operator
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 273
EP  - 282
VL  - 133
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-13/
DO  - 10.4064/cm133-2-13
LA  - en
ID  - 10_4064_cm133_2_13
ER  - 
%0 Journal Article
%A Eleftherios N. Nikolidakis
%T Properties of extremal sequences for the Bellman function of the dyadic maximal operator
%J Colloquium Mathematicum
%D 2013
%P 273-282
%V 133
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-13/
%R 10.4064/cm133-2-13
%G en
%F 10_4064_cm133_2_13
Eleftherios N. Nikolidakis. Properties of extremal sequences for the Bellman function of the dyadic maximal operator. Colloquium Mathematicum, Tome 133 (2013) no. 2, pp. 273-282. doi : 10.4064/cm133-2-13. http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-13/

Cité par Sources :