Properties of extremal sequences for the Bellman function of the dyadic maximal operator
Colloquium Mathematicum, Tome 133 (2013) no. 2, pp. 273-282
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a necessary condition that has every extremal sequence for the Bellman function of the dyadic maximal operator. This implies the weak-$L^p$ uniqueness for such a sequence.
Keywords:
prove necessary condition has every extremal sequence bellman function dyadic maximal operator implies weak l uniqueness sequence
Affiliations des auteurs :
Eleftherios N. Nikolidakis 1
@article{10_4064_cm133_2_13,
author = {Eleftherios N. Nikolidakis},
title = {Properties of extremal sequences for the {Bellman} function of the dyadic maximal operator},
journal = {Colloquium Mathematicum},
pages = {273--282},
publisher = {mathdoc},
volume = {133},
number = {2},
year = {2013},
doi = {10.4064/cm133-2-13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-13/}
}
TY - JOUR AU - Eleftherios N. Nikolidakis TI - Properties of extremal sequences for the Bellman function of the dyadic maximal operator JO - Colloquium Mathematicum PY - 2013 SP - 273 EP - 282 VL - 133 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-13/ DO - 10.4064/cm133-2-13 LA - en ID - 10_4064_cm133_2_13 ER -
%0 Journal Article %A Eleftherios N. Nikolidakis %T Properties of extremal sequences for the Bellman function of the dyadic maximal operator %J Colloquium Mathematicum %D 2013 %P 273-282 %V 133 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-13/ %R 10.4064/cm133-2-13 %G en %F 10_4064_cm133_2_13
Eleftherios N. Nikolidakis. Properties of extremal sequences for the Bellman function of the dyadic maximal operator. Colloquium Mathematicum, Tome 133 (2013) no. 2, pp. 273-282. doi: 10.4064/cm133-2-13
Cité par Sources :