On the Cauchy problem for convolution equations
Colloquium Mathematicum, Tome 133 (2013) no. 1, pp. 115-132.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider one-parameter $(C_{0})$-semigroups of operators in the space $\mathcal S'({\mathbb R}^n;{\mathbb C}^m)$ with infinitesimal generator of the form $(G\,*)|_{\mathcal S'({\mathbb R}^n;{\mathbb C}^m)}$ where $G$ is an $M_{m\times m}$-valued rapidly decreasing distribution on ${\mathbb R}^n$. It is proved that the Petrovskiĭ condition for forward evolution ensures not only the existence and uniqueness of the above semigroup but also its nice behaviour after restriction to whichever of the function spaces $\mathcal S({\mathbb R}^n;{\mathbb C}^m)$, $\mathcal D_{L^{p}}({\mathbb R}^n;{\mathbb C}^m)$, $p\in [1,\infty ]$, $(\mathcal O_{a})({\mathbb R}^n;{\mathbb C}^m)$, $a\in \mathopen ]0,\infty \mathclose [$, or the spaces $\mathcal D'_{L^{q}}({\mathbb R}^n;{\mathbb C}^m)$, $q\in \mathopen ]1,\infty ]$, of bounded distributions.
DOI : 10.4064/cm133-1-8
Keywords: consider one parameter semigroups operators space mathcal mathbb mathbb infinitesimal generator form * mathcal mathbb mathbb where times valued rapidly decreasing distribution nbsp mathbb proved petrovski condition forward evolution ensures only existence uniqueness above semigroup its nice behaviour after restriction whichever function spaces mathcal mathbb mathbb mathcal mathbb mathbb infty mathcal mathbb mathbb mathopen infty mathclose spaces mathcal mathbb mathbb mathopen infty bounded distributions

Jan Kisyński 1

1
@article{10_4064_cm133_1_8,
     author = {Jan Kisy\'nski},
     title = {On the {Cauchy} problem for convolution equations},
     journal = {Colloquium Mathematicum},
     pages = {115--132},
     publisher = {mathdoc},
     volume = {133},
     number = {1},
     year = {2013},
     doi = {10.4064/cm133-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-8/}
}
TY  - JOUR
AU  - Jan Kisyński
TI  - On the Cauchy problem for convolution equations
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 115
EP  - 132
VL  - 133
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-8/
DO  - 10.4064/cm133-1-8
LA  - en
ID  - 10_4064_cm133_1_8
ER  - 
%0 Journal Article
%A Jan Kisyński
%T On the Cauchy problem for convolution equations
%J Colloquium Mathematicum
%D 2013
%P 115-132
%V 133
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-8/
%R 10.4064/cm133-1-8
%G en
%F 10_4064_cm133_1_8
Jan Kisyński. On the Cauchy problem for convolution equations. Colloquium Mathematicum, Tome 133 (2013) no. 1, pp. 115-132. doi : 10.4064/cm133-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-8/

Cité par Sources :