Conditions for $p$-supersolubility and $p$-nilpotency
of finite soluble groups
Colloquium Mathematicum, Tome 133 (2013) no. 1, pp. 85-98
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathfrak {Z}$ be a complete set of Sylow subgroups of a group $G$. A subgroup $H$ of $G$ is called $\mathfrak {Z}$-permutably embedded in $G$ if every Sylow subgroup of $H$ is also a Sylow subgroup of some $\mathfrak {Z}$-permutable subgroup of $G$. By using this concept, we obtain some new criteria of $p$-supersolubility and $p$-nilpotency of a finite group.
Keywords:
mathfrak complete set sylow subgroups group subgroup called mathfrak permutably embedded every sylow subgroup sylow subgroup mathfrak permutable subgroup using concept obtain criteria p supersolubility p nilpotency finite group
Affiliations des auteurs :
Wenai Yan 1 ; Baojun Li 2 ; Zhirang Zhang 2
@article{10_4064_cm133_1_6,
author = {Wenai Yan and Baojun Li and Zhirang Zhang},
title = {Conditions for $p$-supersolubility and $p$-nilpotency
of finite soluble groups},
journal = {Colloquium Mathematicum},
pages = {85--98},
publisher = {mathdoc},
volume = {133},
number = {1},
year = {2013},
doi = {10.4064/cm133-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-6/}
}
TY - JOUR AU - Wenai Yan AU - Baojun Li AU - Zhirang Zhang TI - Conditions for $p$-supersolubility and $p$-nilpotency of finite soluble groups JO - Colloquium Mathematicum PY - 2013 SP - 85 EP - 98 VL - 133 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-6/ DO - 10.4064/cm133-1-6 LA - en ID - 10_4064_cm133_1_6 ER -
%0 Journal Article %A Wenai Yan %A Baojun Li %A Zhirang Zhang %T Conditions for $p$-supersolubility and $p$-nilpotency of finite soluble groups %J Colloquium Mathematicum %D 2013 %P 85-98 %V 133 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-6/ %R 10.4064/cm133-1-6 %G en %F 10_4064_cm133_1_6
Wenai Yan; Baojun Li; Zhirang Zhang. Conditions for $p$-supersolubility and $p$-nilpotency of finite soluble groups. Colloquium Mathematicum, Tome 133 (2013) no. 1, pp. 85-98. doi: 10.4064/cm133-1-6
Cité par Sources :