Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies–Gaffney estimates
Colloquium Mathematicum, Tome 133 (2013) no. 1, pp. 51-65.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider an abstract non-negative self-adjoint operator $L$ acting on $L^2(X)$ which satisfies Davies–Gaffney estimates. Let $H^p_L(X)$ $(p>0)$ be the Hardy spaces associated to the operator $L$. We assume that the doubling condition holds for the metric measure space $X$. We show that a sharp Hörmander-type spectral multiplier theorem on $H^p_L(X)$ follows from restriction-type estimates and Davies–Gaffney estimates. We also establish a sharp result for the boundedness of Bochner–Riesz means on $H^p_L(X)$.
DOI : 10.4064/cm133-1-4
Keywords: consider abstract non negative self adjoint operator nbsp acting which satisfies davies gaffney estimates x hardy spaces associated operator nbsp assume doubling condition holds metric measure space sharp rmander type spectral multiplier theorem x follows restriction type estimates davies gaffney estimates establish sharp result boundedness bochner riesz means x

Peng Chen 1

1 School of Information Technology and Mathematical Sciences University of South Australia Adelaide, SA, 5095, Australia
@article{10_4064_cm133_1_4,
     author = {Peng Chen},
     title = {Sharp spectral multipliers for {Hardy} spaces associated to non-negative self-adjoint operators
 satisfying {Davies{\textendash}Gaffney} estimates},
     journal = {Colloquium Mathematicum},
     pages = {51--65},
     publisher = {mathdoc},
     volume = {133},
     number = {1},
     year = {2013},
     doi = {10.4064/cm133-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-4/}
}
TY  - JOUR
AU  - Peng Chen
TI  - Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators
 satisfying Davies–Gaffney estimates
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 51
EP  - 65
VL  - 133
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-4/
DO  - 10.4064/cm133-1-4
LA  - en
ID  - 10_4064_cm133_1_4
ER  - 
%0 Journal Article
%A Peng Chen
%T Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators
 satisfying Davies–Gaffney estimates
%J Colloquium Mathematicum
%D 2013
%P 51-65
%V 133
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-4/
%R 10.4064/cm133-1-4
%G en
%F 10_4064_cm133_1_4
Peng Chen. Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators
 satisfying Davies–Gaffney estimates. Colloquium Mathematicum, Tome 133 (2013) no. 1, pp. 51-65. doi : 10.4064/cm133-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-4/

Cité par Sources :