Cycle-finite algebras with almost all indecomposable modules of projective or injective dimension at most one
Colloquium Mathematicum, Tome 132 (2013) no. 2, pp. 239-270.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We describe the structure of artin algebras for which all cycles of indecomposable modules are finite and almost all indecomposable modules have projective or injective dimension at most one.
DOI : 10.4064/cm132-2-6
Keywords: describe structure artin algebras which cycles indecomposable modules finite almost indecomposable modules have projective injective dimension

Adam Skowyrski 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm132_2_6,
     author = {Adam Skowyrski},
     title = {Cycle-finite algebras with almost all indecomposable modules of projective or injective dimension at most one},
     journal = {Colloquium Mathematicum},
     pages = {239--270},
     publisher = {mathdoc},
     volume = {132},
     number = {2},
     year = {2013},
     doi = {10.4064/cm132-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-2-6/}
}
TY  - JOUR
AU  - Adam Skowyrski
TI  - Cycle-finite algebras with almost all indecomposable modules of projective or injective dimension at most one
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 239
EP  - 270
VL  - 132
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm132-2-6/
DO  - 10.4064/cm132-2-6
LA  - en
ID  - 10_4064_cm132_2_6
ER  - 
%0 Journal Article
%A Adam Skowyrski
%T Cycle-finite algebras with almost all indecomposable modules of projective or injective dimension at most one
%J Colloquium Mathematicum
%D 2013
%P 239-270
%V 132
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm132-2-6/
%R 10.4064/cm132-2-6
%G en
%F 10_4064_cm132_2_6
Adam Skowyrski. Cycle-finite algebras with almost all indecomposable modules of projective or injective dimension at most one. Colloquium Mathematicum, Tome 132 (2013) no. 2, pp. 239-270. doi : 10.4064/cm132-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm132-2-6/

Cité par Sources :