On sums of powers of the positive integers
Colloquium Mathematicum, Tome 132 (2013) no. 2, pp. 211-220.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The pairs $(k,m)$ are studied such that for every positive integer $n$ we have $1^k +2^k +\cdots+n^k\,|\,1^{km} + 2^{km} + \cdots+n^{km}$.
DOI : 10.4064/cm132-2-4
Keywords: pairs studied every positive integer have cdots cdots

A. Schinzel 1

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland
@article{10_4064_cm132_2_4,
     author = {A. Schinzel},
     title = {On sums of powers of the positive integers},
     journal = {Colloquium Mathematicum},
     pages = {211--220},
     publisher = {mathdoc},
     volume = {132},
     number = {2},
     year = {2013},
     doi = {10.4064/cm132-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-2-4/}
}
TY  - JOUR
AU  - A. Schinzel
TI  - On sums of powers of the positive integers
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 211
EP  - 220
VL  - 132
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm132-2-4/
DO  - 10.4064/cm132-2-4
LA  - en
ID  - 10_4064_cm132_2_4
ER  - 
%0 Journal Article
%A A. Schinzel
%T On sums of powers of the positive integers
%J Colloquium Mathematicum
%D 2013
%P 211-220
%V 132
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm132-2-4/
%R 10.4064/cm132-2-4
%G en
%F 10_4064_cm132_2_4
A. Schinzel. On sums of powers of the positive integers. Colloquium Mathematicum, Tome 132 (2013) no. 2, pp. 211-220. doi : 10.4064/cm132-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm132-2-4/

Cité par Sources :