The Heyde theorem on $\bf a$-adic solenoids
Colloquium Mathematicum, Tome 132 (2013) no. 2, pp. 195-210
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the following analogue of the Heyde theorem for
$\bf a$-adic solenoids. Let $ \xi_1$, $\xi_2$ be
independent random variables with values in an ${\bf a}$-adic
solenoid $ \varSigma_{\bf a}$ and with distributions $\mu_1$,
$\mu_2$. Let $\alpha_j, \beta_j$ be topological automorphisms of
$\varSigma_{\bf a}$ such that $\beta_1\alpha^{-1}_1 \pm
\beta_2\alpha^{-1}_2$ are topological automorphisms of
$\varSigma_{\bf a}$ too. Assuming that the conditional
distribution of the linear form $L_2=\beta_1\xi_1 + \beta_2\xi_2$
given $L_1=\alpha_1\xi_1 + \alpha_2\xi_2$ is symmetric, we describe the
possible distributions $\mu_1$, $\mu_2$.
Keywords:
prove following analogue heyde theorem a adic solenoids independent random variables values adic solenoid varsigma distributions alpha beta topological automorphisms varsigma beta alpha beta alpha topological automorphisms varsigma too assuming conditional distribution linear form beta beta given alpha alpha symmetric describe possible distributions
Affiliations des auteurs :
Margaryta Myronyuk 1
@article{10_4064_cm132_2_3,
author = {Margaryta Myronyuk},
title = {The {Heyde} theorem on $\bf a$-adic solenoids},
journal = {Colloquium Mathematicum},
pages = {195--210},
publisher = {mathdoc},
volume = {132},
number = {2},
year = {2013},
doi = {10.4064/cm132-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-2-3/}
}
Margaryta Myronyuk. The Heyde theorem on $\bf a$-adic solenoids. Colloquium Mathematicum, Tome 132 (2013) no. 2, pp. 195-210. doi: 10.4064/cm132-2-3
Cité par Sources :