Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
T. Godoy 1 ; P. Rocha 1
@article{10_4064_cm132_1_8, author = {T. Godoy and P. Rocha}, title = {$L^{p}$-$L^{q}$ estimates for some convolution operators with singular measures on the {Heisenberg} group}, journal = {Colloquium Mathematicum}, pages = {101--111}, publisher = {mathdoc}, volume = {132}, number = {1}, year = {2013}, doi = {10.4064/cm132-1-8}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-8/} }
TY - JOUR AU - T. Godoy AU - P. Rocha TI - $L^{p}$-$L^{q}$ estimates for some convolution operators with singular measures on the Heisenberg group JO - Colloquium Mathematicum PY - 2013 SP - 101 EP - 111 VL - 132 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-8/ DO - 10.4064/cm132-1-8 LA - en ID - 10_4064_cm132_1_8 ER -
%0 Journal Article %A T. Godoy %A P. Rocha %T $L^{p}$-$L^{q}$ estimates for some convolution operators with singular measures on the Heisenberg group %J Colloquium Mathematicum %D 2013 %P 101-111 %V 132 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-8/ %R 10.4064/cm132-1-8 %G en %F 10_4064_cm132_1_8
T. Godoy; P. Rocha. $L^{p}$-$L^{q}$ estimates for some convolution operators with singular measures on the Heisenberg group. Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 101-111. doi : 10.4064/cm132-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-8/
Cité par Sources :