$L^{p}$-$L^{q}$ estimates for some convolution operators with singular measures on the Heisenberg group
Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 101-111.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the Heisenberg group $\mathbb{H}^{n}=\mathbb{C}^{n}\times \mathbb{R}$. Let $\nu $ be the Borel measure on $\mathbb{H}^{n}$ defined by $ \nu (E)=\int_{\mathbb{C}^{n}}\chi _{E}( w,\varphi (w)) \eta (w)\,dw$, where $\varphi (w)=\sum_{j=1}^{n}a_{j}\vert w_{j}\vert ^{2}$, $w=(w_{1},\dots,w_{n})\in \mathbb{C}^{n}$, $a_{j}\in \mathbb{R}$, and $\eta (w)=\eta _{0}( \vert w\vert ^{2}) $ with $\eta _{0}\in C_{c}^{\infty }(\mathbb{R})$. We characterize the set of pairs $(p,q)$ such that the convolution operator with $\nu $ is $L^{p}(\mathbb{H}^{n})$-$L^{q}(\mathbb{H}^{n})$ bounded. We also obtain $L^{p}$-improving properties of measures supported on the graph of the function $\varphi (w)=|w|^{2m}$.
DOI : 10.4064/cm132-1-8
Keywords: consider heisenberg group mathbb mathbb times mathbb borel measure mathbb defined int mathbb chi varphi eta where varphi sum vert vert dots mathbb mathbb eta eta vert vert eta infty mathbb characterize set pairs convolution operator mathbb l mathbb bounded obtain improving properties measures supported graph function varphi

T. Godoy 1 ; P. Rocha 1

1 Facultad de Matemática, Astronomía y Física – Ciem Universidad Nacional de Córdoba – Conicet Ciudad Universitaria, 5000 Córdoba, Argentina
@article{10_4064_cm132_1_8,
     author = {T. Godoy and P. Rocha},
     title = {$L^{p}$-$L^{q}$ estimates for some convolution operators with singular measures on the {Heisenberg} group},
     journal = {Colloquium Mathematicum},
     pages = {101--111},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {2013},
     doi = {10.4064/cm132-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-8/}
}
TY  - JOUR
AU  - T. Godoy
AU  - P. Rocha
TI  - $L^{p}$-$L^{q}$ estimates for some convolution operators with singular measures on the Heisenberg group
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 101
EP  - 111
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-8/
DO  - 10.4064/cm132-1-8
LA  - en
ID  - 10_4064_cm132_1_8
ER  - 
%0 Journal Article
%A T. Godoy
%A P. Rocha
%T $L^{p}$-$L^{q}$ estimates for some convolution operators with singular measures on the Heisenberg group
%J Colloquium Mathematicum
%D 2013
%P 101-111
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-8/
%R 10.4064/cm132-1-8
%G en
%F 10_4064_cm132_1_8
T. Godoy; P. Rocha. $L^{p}$-$L^{q}$ estimates for some convolution operators with singular measures on the Heisenberg group. Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 101-111. doi : 10.4064/cm132-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-8/

Cité par Sources :