Asymptotic spectral distributions of distance-$k$ graphs of Cartesian product graphs
Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 35-51.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a finite connected graph on two or more vertices, and $G^{[N,k]}$ the distance-$k$ graph of the $N$-fold Cartesian power of $G$. For a fixed $k\ge 1$, we obtain explicitly the large $N$ limit of the spectral distribution (the eigenvalue distribution of the adjacency matrix) of $G^{[N,k]}$. The limit distribution is described in terms of the Hermite polynomials. The proof is based on asymptotic combinatorics along with quantum probability theory.
DOI : 10.4064/cm132-1-4
Keywords: finite connected graph vertices distance k graph n fold cartesian power fixed obtain explicitly large limit spectral distribution eigenvalue distribution adjacency matrix limit distribution described terms hermite polynomials proof based asymptotic combinatorics along quantum probability theory

Yuji Hibino 1 ; Hun Hee Lee 2 ; Nobuaki Obata 3

1 Department of Mathematics Saga University Saga, 840-8502, Japan
2 Department of Mathematical Sciences and Research Institute of Mathematics Seoul National University Seoul 151-747, Republic of Korea
3 Graduate School of Information Sciences Tohoku University Sendai, 980-8579, Japan
@article{10_4064_cm132_1_4,
     author = {Yuji Hibino and Hun Hee Lee and Nobuaki Obata},
     title = {Asymptotic spectral distributions
 of distance-$k$ graphs of {Cartesian} product graphs},
     journal = {Colloquium Mathematicum},
     pages = {35--51},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {2013},
     doi = {10.4064/cm132-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-4/}
}
TY  - JOUR
AU  - Yuji Hibino
AU  - Hun Hee Lee
AU  - Nobuaki Obata
TI  - Asymptotic spectral distributions
 of distance-$k$ graphs of Cartesian product graphs
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 35
EP  - 51
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-4/
DO  - 10.4064/cm132-1-4
LA  - en
ID  - 10_4064_cm132_1_4
ER  - 
%0 Journal Article
%A Yuji Hibino
%A Hun Hee Lee
%A Nobuaki Obata
%T Asymptotic spectral distributions
 of distance-$k$ graphs of Cartesian product graphs
%J Colloquium Mathematicum
%D 2013
%P 35-51
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-4/
%R 10.4064/cm132-1-4
%G en
%F 10_4064_cm132_1_4
Yuji Hibino; Hun Hee Lee; Nobuaki Obata. Asymptotic spectral distributions
 of distance-$k$ graphs of Cartesian product graphs. Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 35-51. doi : 10.4064/cm132-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-4/

Cité par Sources :