On a relation between norms of
the maximal function and
the square function of a martingale
Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 13-26
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\varOmega $ be a nonatomic probability space, let $X$ be a Banach function space over $\varOmega $, and let $\mathcal {M}$ be the collection of all martingales on $\varOmega $. For $f=(f_n)_{n \in \mathbb {Z}_+}\in \mathcal M$, let $Mf$ and $Sf$ denote the maximal function and the square function of $f$, respectively. We give some necessary and sufficient conditions for $X$ to have the property that if $f, g \in \mathcal M$ and $\| Mg\| _X \le \| Mf\| _X$, then $\| Sg\| _X \le C\| Sf\| _X$, where $C$ is a constant independent of $f$ and $g$.
Keywords:
varomega nonatomic probability space banach function space varomega mathcal collection martingales nbsp varomega mathbb mathcal denote maximal function square function nbsp respectively necessary sufficient conditions have property mathcal where constant independent nbsp
Affiliations des auteurs :
Masato Kikuchi 1
@article{10_4064_cm132_1_2,
author = {Masato Kikuchi},
title = {On a relation between norms of
the maximal function and
the square function of a martingale},
journal = {Colloquium Mathematicum},
pages = {13--26},
year = {2013},
volume = {132},
number = {1},
doi = {10.4064/cm132-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-2/}
}
TY - JOUR AU - Masato Kikuchi TI - On a relation between norms of the maximal function and the square function of a martingale JO - Colloquium Mathematicum PY - 2013 SP - 13 EP - 26 VL - 132 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-2/ DO - 10.4064/cm132-1-2 LA - en ID - 10_4064_cm132_1_2 ER -
Masato Kikuchi. On a relation between norms of the maximal function and the square function of a martingale. Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 13-26. doi: 10.4064/cm132-1-2
Cité par Sources :