On a generalisation of the Hahn–Jordan decomposition for real càdlàg functions
Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 121-138
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For a real càdlàg function $f$ and a positive constant $c$ we find another càdlàg function which has the smallest total variation among all functions uniformly approximating $f$ with accuracy $c/2.$ The solution is expressed in terms of truncated variation, upward truncated variation and downward truncated variation introduced in earlier work of the author. They are always finite even if the total variation of $f$ is infinite, and they may be viewed as a generalisation of the Hahn–Jordan decomposition for real càdlàg functions. We also present partial results for more general functions.
Mots-clés :
real function positive constant another function which has smallest total variation among functions uniformly approximating accuracy solution expressed terms truncated variation upward truncated variation downward truncated variation introduced earlier work author always finite even total variation infinite may viewed generalisation hahn jordan decomposition real functions present partial results general functions
Affiliations des auteurs :
Rafał M. Łochowski 1
@article{10_4064_cm132_1_10,
author = {Rafa{\l} M. {\L}ochowski},
title = {On a generalisation of the {Hahn{\textendash}Jordan} decomposition for real c\`adl\`ag functions},
journal = {Colloquium Mathematicum},
pages = {121--138},
year = {2013},
volume = {132},
number = {1},
doi = {10.4064/cm132-1-10},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-10/}
}
TY - JOUR AU - Rafał M. Łochowski TI - On a generalisation of the Hahn–Jordan decomposition for real càdlàg functions JO - Colloquium Mathematicum PY - 2013 SP - 121 EP - 138 VL - 132 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-10/ DO - 10.4064/cm132-1-10 LA - fr ID - 10_4064_cm132_1_10 ER -
Rafał M. Łochowski. On a generalisation of the Hahn–Jordan decomposition for real càdlàg functions. Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 121-138. doi: 10.4064/cm132-1-10
Cité par Sources :