Vector-valued invariant means on spaces of bounded linear maps
Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 1-11.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\mathcal A}$ be a Banach algebra and let ${\mathcal M}$ be a $W^*$-algebra. For a homomorphism $\varPhi $ from ${\mathcal A}$ into ${\mathcal M}$, we introduce and study ${\mathcal M}$-valued invariant $\varPhi $-means on the space of bounded linear maps from ${\mathcal A}$ into ${\mathcal M}$. We establish several characterizations of existence of an ${\mathcal M}$-valued invariant $\varPhi $-mean on $B({\mathcal A},{\mathcal M})$. We also study the relation between existence of an ${\mathcal M}$-valued invariant $\varPhi $-mean on $B({\mathcal A},{\mathcal M})$ and amenability of ${\mathcal A}$. Finally, for a character $\phi $ of ${\mathcal A}$, we give some descriptions for $\phi $-amenability of $\mathcal A$ in terms of ${\mathcal M}$-valued invariant $\varPhi $-means.
DOI : 10.4064/cm132-1-1
Keywords: mathcal banach algebra mathcal * algebra homomorphism varphi mathcal mathcal introduce study mathcal valued invariant varphi means space bounded linear maps mathcal mathcal establish several characterizations existence mathcal valued invariant varphi mean mathcal mathcal study relation between existence mathcal valued invariant varphi mean mathcal mathcal amenability mathcal finally character phi mathcal descriptions phi amenability mathcal terms mathcal valued invariant varphi means

Mahshid Dashti 1 ; Rasoul Nasr-Isfahani 2 ; Sima Soltani Renani 3

1 Department of Mathematical Sciences Isfahan University of Technology 84156-83111 Isfahan, Iran and Department of Mathematics Malayer University 65719-95863 Malayer, Hamedan, Iran
2 Department of Mathematical Sciences Isfahan University of Technology 84156-83111 Isfahan, Iran and School of Mathematics Institute for Research in Fundamental Science (IPM) 19395-5746 Tehran, Iran
3 Department of Mathematical Sciences Isfahan University of Technology 84156-83111 Isfahan, Iran
@article{10_4064_cm132_1_1,
     author = {Mahshid Dashti and Rasoul Nasr-Isfahani and Sima Soltani Renani},
     title = {Vector-valued invariant means on spaces of bounded linear maps},
     journal = {Colloquium Mathematicum},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {2013},
     doi = {10.4064/cm132-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-1/}
}
TY  - JOUR
AU  - Mahshid Dashti
AU  - Rasoul Nasr-Isfahani
AU  - Sima Soltani Renani
TI  - Vector-valued invariant means on spaces of bounded linear maps
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 1
EP  - 11
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-1/
DO  - 10.4064/cm132-1-1
LA  - en
ID  - 10_4064_cm132_1_1
ER  - 
%0 Journal Article
%A Mahshid Dashti
%A Rasoul Nasr-Isfahani
%A Sima Soltani Renani
%T Vector-valued invariant means on spaces of bounded linear maps
%J Colloquium Mathematicum
%D 2013
%P 1-11
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-1/
%R 10.4064/cm132-1-1
%G en
%F 10_4064_cm132_1_1
Mahshid Dashti; Rasoul Nasr-Isfahani; Sima Soltani Renani. Vector-valued invariant means on spaces of bounded linear maps. Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 1-11. doi : 10.4064/cm132-1-1. http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-1/

Cité par Sources :