An inequality for spherical Cauchy dual tuples
Colloquium Mathematicum, Tome 131 (2013) no. 2, pp. 265-271
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $T$ be a spherical $2$-expansive $m$-tuple and let $T^{\mathfrak s}$ denote its spherical Cauchy dual. If $T^{\mathfrak s}$ is commuting then the inequality
$$ \sum _{|\beta |=k} (\beta !)^{-1} {(T^{\mathfrak s})}^{\beta }{(T^{\mathfrak s})^*}^{\beta }\leq
\left ({k+m-1\atop k}\right) \sum_{|\beta |=k} (\beta !)^{-1} {(T^{\mathfrak s})^*}^{\beta }(T^{\mathfrak s})^{\beta } $$ holds for every positive integer $k.$ In case $m=1,$ this reveals the rather curious fact that all positive integral powers of the Cauchy dual of a $2$-expansive (or concave) operator are hyponormal.
Keywords:
spherical expansive m tuple mathfrak denote its spherical cauchy dual mathfrak commuting inequality sum beta beta mathfrak beta mathfrak * beta leq m atop right sum beta beta mathfrak * beta mathfrak beta holds every positive integer reveals rather curious positive integral powers cauchy dual expansive concave operator hyponormal
Affiliations des auteurs :
Sameer Chavan 1
@article{10_4064_cm131_2_8,
author = {Sameer Chavan},
title = {An inequality for spherical {Cauchy} dual tuples},
journal = {Colloquium Mathematicum},
pages = {265--271},
publisher = {mathdoc},
volume = {131},
number = {2},
year = {2013},
doi = {10.4064/cm131-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-2-8/}
}
Sameer Chavan. An inequality for spherical Cauchy dual tuples. Colloquium Mathematicum, Tome 131 (2013) no. 2, pp. 265-271. doi: 10.4064/cm131-2-8
Cité par Sources :