An inequality for spherical Cauchy dual tuples
Colloquium Mathematicum, Tome 131 (2013) no. 2, pp. 265-271.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $T$ be a spherical $2$-expansive $m$-tuple and let $T^{\mathfrak s}$ denote its spherical Cauchy dual. If $T^{\mathfrak s}$ is commuting then the inequality $$ \sum _{|\beta |=k} (\beta !)^{-1} {(T^{\mathfrak s})}^{\beta }{(T^{\mathfrak s})^*}^{\beta }\leq \left ({k+m-1\atop k}\right) \sum_{|\beta |=k} (\beta !)^{-1} {(T^{\mathfrak s})^*}^{\beta }(T^{\mathfrak s})^{\beta } $$ holds for every positive integer $k.$ In case $m=1,$ this reveals the rather curious fact that all positive integral powers of the Cauchy dual of a $2$-expansive (or concave) operator are hyponormal.
DOI : 10.4064/cm131-2-8
Keywords: spherical expansive m tuple mathfrak denote its spherical cauchy dual mathfrak commuting inequality sum beta beta mathfrak beta mathfrak * beta leq m atop right sum beta beta mathfrak * beta mathfrak beta holds every positive integer reveals rather curious positive integral powers cauchy dual expansive concave operator hyponormal

Sameer Chavan 1

1 Department of Mathematics Indian Institute of Technology Kanpur Kanpur 208016, India
@article{10_4064_cm131_2_8,
     author = {Sameer Chavan},
     title = {An inequality for spherical {Cauchy} dual tuples},
     journal = {Colloquium Mathematicum},
     pages = {265--271},
     publisher = {mathdoc},
     volume = {131},
     number = {2},
     year = {2013},
     doi = {10.4064/cm131-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-2-8/}
}
TY  - JOUR
AU  - Sameer Chavan
TI  - An inequality for spherical Cauchy dual tuples
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 265
EP  - 271
VL  - 131
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm131-2-8/
DO  - 10.4064/cm131-2-8
LA  - en
ID  - 10_4064_cm131_2_8
ER  - 
%0 Journal Article
%A Sameer Chavan
%T An inequality for spherical Cauchy dual tuples
%J Colloquium Mathematicum
%D 2013
%P 265-271
%V 131
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm131-2-8/
%R 10.4064/cm131-2-8
%G en
%F 10_4064_cm131_2_8
Sameer Chavan. An inequality for spherical Cauchy dual tuples. Colloquium Mathematicum, Tome 131 (2013) no. 2, pp. 265-271. doi : 10.4064/cm131-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm131-2-8/

Cité par Sources :