Quiver bialgebras and monoidal categories
Colloquium Mathematicum, Tome 131 (2013) no. 2, pp. 287-300
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study bialgebra structures on quiver coalgebras and monoidal structures on the categories of locally nilpotent and locally finite quiver representations. It is shown that the path coalgebra of an arbitrary quiver admits natural bialgebra structures. This endows the category of locally nilpotent and locally finite representations of an arbitrary quiver with natural monoidal structures from bialgebras. We also obtain theorems of Gabriel type for pointed bialgebras and hereditary finite pointed monoidal categories.
Mots-clés :
study bialgebra structures quiver coalgebras monoidal structures categories locally nilpotent locally finite quiver representations shown path coalgebra arbitrary quiver admits natural bialgebra structures endows category locally nilpotent locally finite representations arbitrary quiver natural monoidal structures bialgebras obtain theorems gabriel type pointed bialgebras hereditary finite pointed monoidal categories
Affiliations des auteurs :
Hua-Lin Huang 1 ; Blas Torrecillas 2
@article{10_4064_cm131_2_10,
author = {Hua-Lin Huang and Blas Torrecillas},
title = {Quiver bialgebras and monoidal categories},
journal = {Colloquium Mathematicum},
pages = {287--300},
year = {2013},
volume = {131},
number = {2},
doi = {10.4064/cm131-2-10},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-2-10/}
}
Hua-Lin Huang; Blas Torrecillas. Quiver bialgebras and monoidal categories. Colloquium Mathematicum, Tome 131 (2013) no. 2, pp. 287-300. doi: 10.4064/cm131-2-10
Cité par Sources :