Convergence of logarithmic means of quadratic partial sums of double Fourier series
Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 99-112
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate some convergence and divergence properties of the logarithmic means of quadratic partial sums of double Fourier series of functions, in measure and in the $L$ Lebesgue norm.
Keywords:
investigate convergence divergence properties logarithmic means quadratic partial sums double fourier series functions measure lebesgue norm
Affiliations des auteurs :
Ushangi Goginava 1
@article{10_4064_cm131_1_9,
author = {Ushangi Goginava},
title = {Convergence of logarithmic means of quadratic partial sums of double {Fourier} series},
journal = {Colloquium Mathematicum},
pages = {99--112},
publisher = {mathdoc},
volume = {131},
number = {1},
year = {2013},
doi = {10.4064/cm131-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-9/}
}
TY - JOUR AU - Ushangi Goginava TI - Convergence of logarithmic means of quadratic partial sums of double Fourier series JO - Colloquium Mathematicum PY - 2013 SP - 99 EP - 112 VL - 131 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-9/ DO - 10.4064/cm131-1-9 LA - en ID - 10_4064_cm131_1_9 ER -
Ushangi Goginava. Convergence of logarithmic means of quadratic partial sums of double Fourier series. Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 99-112. doi: 10.4064/cm131-1-9
Cité par Sources :