Convergence of logarithmic means of quadratic partial sums of double Fourier series
Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 99-112.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate some convergence and divergence properties of the logarithmic means of quadratic partial sums of double Fourier series of functions, in measure and in the $L$ Lebesgue norm.
DOI : 10.4064/cm131-1-9
Keywords: investigate convergence divergence properties logarithmic means quadratic partial sums double fourier series functions measure lebesgue norm

Ushangi Goginava 1

1 Department of Mathematics Faculty of Exact and Natural Sciences Iv. Javakhishvili Tbilisi State University Chavchavadze St. 1 Tbilisi 0128, Georgia
@article{10_4064_cm131_1_9,
     author = {Ushangi Goginava},
     title = {Convergence of logarithmic means of quadratic partial sums of double {Fourier} series},
     journal = {Colloquium Mathematicum},
     pages = {99--112},
     publisher = {mathdoc},
     volume = {131},
     number = {1},
     year = {2013},
     doi = {10.4064/cm131-1-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-9/}
}
TY  - JOUR
AU  - Ushangi Goginava
TI  - Convergence of logarithmic means of quadratic partial sums of double Fourier series
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 99
EP  - 112
VL  - 131
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-9/
DO  - 10.4064/cm131-1-9
LA  - en
ID  - 10_4064_cm131_1_9
ER  - 
%0 Journal Article
%A Ushangi Goginava
%T Convergence of logarithmic means of quadratic partial sums of double Fourier series
%J Colloquium Mathematicum
%D 2013
%P 99-112
%V 131
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-9/
%R 10.4064/cm131-1-9
%G en
%F 10_4064_cm131_1_9
Ushangi Goginava. Convergence of logarithmic means of quadratic partial sums of double Fourier series. Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 99-112. doi : 10.4064/cm131-1-9. http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-9/

Cité par Sources :