$P_{\lambda}$-sets and skeletal mappings
Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 89-98.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if the topology on the set $\operatorname {Seq}$ of all finite sequences of natural numbers is determined by $P_\lambda $-filters and $\lambda \leq \mathfrak {b}$, then $\operatorname {Seq}$ is a $P_\lambda $-set in its Čech–Stone compactification. This improves some results of Simon and of Juhász and Szymański. As a corollary we obtain a generalization of a result of Burke concerning skeletal maps and we partially answer a question of his.
DOI : 10.4064/cm131-1-8
Keywords: prove topology set operatorname seq finite sequences natural numbers determined lambda filters lambda leq mathfrak operatorname seq lambda set its ech stone compactification improves results simon juh szyma ski corollary obtain generalization result burke concerning skeletal maps partially answer question his

Aleksander Błaszczyk 1 ; Anna Brzeska 1

1 Institute of Mathematics University of Silesia Bankowa 14 40-007 Katowice, Poland
@article{10_4064_cm131_1_8,
     author = {Aleksander B{\l}aszczyk and Anna Brzeska},
     title = {$P_{\lambda}$-sets and skeletal mappings},
     journal = {Colloquium Mathematicum},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {131},
     number = {1},
     year = {2013},
     doi = {10.4064/cm131-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-8/}
}
TY  - JOUR
AU  - Aleksander Błaszczyk
AU  - Anna Brzeska
TI  - $P_{\lambda}$-sets and skeletal mappings
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 89
EP  - 98
VL  - 131
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-8/
DO  - 10.4064/cm131-1-8
LA  - en
ID  - 10_4064_cm131_1_8
ER  - 
%0 Journal Article
%A Aleksander Błaszczyk
%A Anna Brzeska
%T $P_{\lambda}$-sets and skeletal mappings
%J Colloquium Mathematicum
%D 2013
%P 89-98
%V 131
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-8/
%R 10.4064/cm131-1-8
%G en
%F 10_4064_cm131_1_8
Aleksander Błaszczyk; Anna Brzeska. $P_{\lambda}$-sets and skeletal mappings. Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 89-98. doi : 10.4064/cm131-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-8/

Cité par Sources :