On the stability of the unit circle with minimal self-perimeter in normed planes
Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 69-87
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a stability result on the minimal self-perimeter $L(B)$ of the unit disk $B$ of a normed plane: if $L(B) = 6 + \varepsilon $ for a sufficiently small $\varepsilon $, then there exists an affinely regular hexagon $S$ such that $S \subset B \subset (1 + 6 \sqrt [3]{\varepsilon }) S$.
Keywords:
prove stability result minimal self perimeter unit disk normed plane varepsilon sufficiently small varepsilon there exists affinely regular hexagon subset subset sqrt varepsilon
Affiliations des auteurs :
Horst Martini 1 ; Anatoly Shcherba 2
@article{10_4064_cm131_1_7,
author = {Horst Martini and Anatoly Shcherba},
title = {On the stability of the unit circle with minimal self-perimeter in normed planes},
journal = {Colloquium Mathematicum},
pages = {69--87},
publisher = {mathdoc},
volume = {131},
number = {1},
year = {2013},
doi = {10.4064/cm131-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-7/}
}
TY - JOUR AU - Horst Martini AU - Anatoly Shcherba TI - On the stability of the unit circle with minimal self-perimeter in normed planes JO - Colloquium Mathematicum PY - 2013 SP - 69 EP - 87 VL - 131 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-7/ DO - 10.4064/cm131-1-7 LA - en ID - 10_4064_cm131_1_7 ER -
%0 Journal Article %A Horst Martini %A Anatoly Shcherba %T On the stability of the unit circle with minimal self-perimeter in normed planes %J Colloquium Mathematicum %D 2013 %P 69-87 %V 131 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-7/ %R 10.4064/cm131-1-7 %G en %F 10_4064_cm131_1_7
Horst Martini; Anatoly Shcherba. On the stability of the unit circle with minimal self-perimeter in normed planes. Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 69-87. doi: 10.4064/cm131-1-7
Cité par Sources :