A note on the Diophantine equation $P(z)=n!+m!$
Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 53-58
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the Brocard–Ramanujan type Diophantine equation $P(z)=n!+m!$, where $P$ is a polynomial with rational coefficients. We show that the ABC Conjecture implies that this equation has only finitely many integer solutions when $d\geq 2$ and $P(z)=a_dz^d+a_{d-3}z^{d-3}+\cdots +a_1x+a_0$.
Mots-clés :
consider brocard ramanujan type diophantine equation where polynomial rational coefficients abc conjecture implies equation has only finitely many integer solutions geq d d cdots
Affiliations des auteurs :
Maciej Gawron 1
@article{10_4064_cm131_1_5,
author = {Maciej Gawron},
title = {A note on the {Diophantine} equation $P(z)=n!+m!$},
journal = {Colloquium Mathematicum},
pages = {53--58},
year = {2013},
volume = {131},
number = {1},
doi = {10.4064/cm131-1-5},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-5/}
}
Maciej Gawron. A note on the Diophantine equation $P(z)=n!+m!$. Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 53-58. doi: 10.4064/cm131-1-5
Cité par Sources :