A Lipschitz function which is $C^{\infty}$ on a.e. line need not be generically differentiable
Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 29-39.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct a Lipschitz function $f$ on $X= {\mathbb R}^2$ such that, for each ${0 \not =v \in X}$, the function $f$ is $C^{\infty }$ smooth on a.e. line parallel to $v$ and $f$ is Gâteaux non-differentiable at all points of $X$ except a first category set. Consequently, the same holds if $X$ (with $\mathop{\rm dim}X >1$) is an arbitrary Banach space and “a.e.” has any usual “measure sense”. This example gives an answer to a natural question concerning the author's recent study of linearly essentially smooth functions (which generalize essentially smooth functions of Borwein and Moors).
DOI : 10.4064/cm131-1-3
Keywords: construct lipschitz function mathbb each function infty smooth line parallel teaux non differentiable points except first category set consequently holds mathop dim arbitrary banach space has usual measure sense example gives answer natural question concerning authors recent study linearly essentially smooth functions which generalize essentially smooth functions borwein moors

Luděk Zajíček 1

1 Charles University Faculty of Mathematics and Physics Sokolovská 83 186 75 Praha, Czech Republic
@article{10_4064_cm131_1_3,
     author = {Lud\v{e}k Zaj{\'\i}\v{c}ek},
     title = {A {Lipschitz} function which is $C^{\infty}$ on a.e. line
 need not be generically differentiable},
     journal = {Colloquium Mathematicum},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {131},
     number = {1},
     year = {2013},
     doi = {10.4064/cm131-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-3/}
}
TY  - JOUR
AU  - Luděk Zajíček
TI  - A Lipschitz function which is $C^{\infty}$ on a.e. line
 need not be generically differentiable
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 29
EP  - 39
VL  - 131
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-3/
DO  - 10.4064/cm131-1-3
LA  - en
ID  - 10_4064_cm131_1_3
ER  - 
%0 Journal Article
%A Luděk Zajíček
%T A Lipschitz function which is $C^{\infty}$ on a.e. line
 need not be generically differentiable
%J Colloquium Mathematicum
%D 2013
%P 29-39
%V 131
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-3/
%R 10.4064/cm131-1-3
%G en
%F 10_4064_cm131_1_3
Luděk Zajíček. A Lipschitz function which is $C^{\infty}$ on a.e. line
 need not be generically differentiable. Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 29-39. doi : 10.4064/cm131-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-3/

Cité par Sources :