Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Luděk Zajíček 1
@article{10_4064_cm131_1_3, author = {Lud\v{e}k Zaj{\'\i}\v{c}ek}, title = {A {Lipschitz} function which is $C^{\infty}$ on a.e. line need not be generically differentiable}, journal = {Colloquium Mathematicum}, pages = {29--39}, publisher = {mathdoc}, volume = {131}, number = {1}, year = {2013}, doi = {10.4064/cm131-1-3}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-3/} }
TY - JOUR AU - Luděk Zajíček TI - A Lipschitz function which is $C^{\infty}$ on a.e. line need not be generically differentiable JO - Colloquium Mathematicum PY - 2013 SP - 29 EP - 39 VL - 131 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-3/ DO - 10.4064/cm131-1-3 LA - en ID - 10_4064_cm131_1_3 ER -
%0 Journal Article %A Luděk Zajíček %T A Lipschitz function which is $C^{\infty}$ on a.e. line need not be generically differentiable %J Colloquium Mathematicum %D 2013 %P 29-39 %V 131 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-3/ %R 10.4064/cm131-1-3 %G en %F 10_4064_cm131_1_3
Luděk Zajíček. A Lipschitz function which is $C^{\infty}$ on a.e. line need not be generically differentiable. Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 29-39. doi : 10.4064/cm131-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-3/
Cité par Sources :