A multiparameter variant of the
Salem–Zygmund central limit theorem on
lacunary trigonometric series
Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 13-27
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the central limit theorem for the multisequence
$$
\sum_{1 \leq n_1 \leq N_1} \cdots \sum_{1 \leq n_d \leq N_d} a_{n_1, \ldots ,n_d}
\cos (\langle 2\pi \mathbf{m}, A_1^{n_1} \dots A_d^{n_d} \mathbf{x} \rangle)
$$
where $\mathbf{m} \in \mathbb Z^s$, $a_{n_1, \ldots ,n_d}$
are reals, $A_1, \ldots ,A_d$ are
partially hyperbolic commuting $s\times s$ matrices,
and $\mathbf{x}$ is a uniformly
distributed random variable in $[0,1]^s$.
The main tool is the S-unit theorem.
Keywords:
prove central limit theorem multisequence sum leq leq cdots sum leq leq ldots cos langle mathbf dots mathbf rangle where mathbf mathbb ldots reals ldots partially hyperbolic commuting times matrices mathbf uniformly distributed random variable main tool s unit theorem
Affiliations des auteurs :
Mordechay B. Levin 1
@article{10_4064_cm131_1_2,
author = {Mordechay B. Levin},
title = {A multiparameter variant of the
{Salem{\textendash}Zygmund} central limit theorem on
lacunary trigonometric series},
journal = {Colloquium Mathematicum},
pages = {13--27},
publisher = {mathdoc},
volume = {131},
number = {1},
year = {2013},
doi = {10.4064/cm131-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-2/}
}
TY - JOUR AU - Mordechay B. Levin TI - A multiparameter variant of the Salem–Zygmund central limit theorem on lacunary trigonometric series JO - Colloquium Mathematicum PY - 2013 SP - 13 EP - 27 VL - 131 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-2/ DO - 10.4064/cm131-1-2 LA - en ID - 10_4064_cm131_1_2 ER -
%0 Journal Article %A Mordechay B. Levin %T A multiparameter variant of the Salem–Zygmund central limit theorem on lacunary trigonometric series %J Colloquium Mathematicum %D 2013 %P 13-27 %V 131 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-2/ %R 10.4064/cm131-1-2 %G en %F 10_4064_cm131_1_2
Mordechay B. Levin. A multiparameter variant of the Salem–Zygmund central limit theorem on lacunary trigonometric series. Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 13-27. doi: 10.4064/cm131-1-2
Cité par Sources :