A multiparameter variant of the Salem–Zygmund central limit theorem on lacunary trigonometric series
Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 13-27.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the central limit theorem for the multisequence $$ \sum_{1 \leq n_1 \leq N_1} \cdots \sum_{1 \leq n_d \leq N_d} a_{n_1, \ldots ,n_d} \cos (\langle 2\pi \mathbf{m}, A_1^{n_1} \dots A_d^{n_d} \mathbf{x} \rangle) $$ where $\mathbf{m} \in \mathbb Z^s$, $a_{n_1, \ldots ,n_d}$ are reals, $A_1, \ldots ,A_d$ are partially hyperbolic commuting $s\times s$ matrices, and $\mathbf{x}$ is a uniformly distributed random variable in $[0,1]^s$. The main tool is the S-unit theorem.
DOI : 10.4064/cm131-1-2
Keywords: prove central limit theorem multisequence sum leq leq cdots sum leq leq ldots cos langle mathbf dots mathbf rangle where mathbf mathbb ldots reals ldots partially hyperbolic commuting times matrices mathbf uniformly distributed random variable main tool s unit theorem

Mordechay B. Levin 1

1 Department of Mathematics Bar-Ilan University Ramat-Gan, 5290002, Israel
@article{10_4064_cm131_1_2,
     author = {Mordechay B. Levin},
     title = {A multiparameter variant of the
 {Salem{\textendash}Zygmund} central limit theorem on
 lacunary trigonometric series},
     journal = {Colloquium Mathematicum},
     pages = {13--27},
     publisher = {mathdoc},
     volume = {131},
     number = {1},
     year = {2013},
     doi = {10.4064/cm131-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-2/}
}
TY  - JOUR
AU  - Mordechay B. Levin
TI  - A multiparameter variant of the
 Salem–Zygmund central limit theorem on
 lacunary trigonometric series
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 13
EP  - 27
VL  - 131
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-2/
DO  - 10.4064/cm131-1-2
LA  - en
ID  - 10_4064_cm131_1_2
ER  - 
%0 Journal Article
%A Mordechay B. Levin
%T A multiparameter variant of the
 Salem–Zygmund central limit theorem on
 lacunary trigonometric series
%J Colloquium Mathematicum
%D 2013
%P 13-27
%V 131
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-2/
%R 10.4064/cm131-1-2
%G en
%F 10_4064_cm131_1_2
Mordechay B. Levin. A multiparameter variant of the
 Salem–Zygmund central limit theorem on
 lacunary trigonometric series. Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 13-27. doi : 10.4064/cm131-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-2/

Cité par Sources :