Non-meager $P$-filters are countable dense homogeneous
Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 281-289.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if $\mathcal {F}$ is a non-meager $P$-filter, then both $\mathcal {F}$ and ${}^ \omega \mathcal {F}$ are countable dense homogeneous spaces.
DOI : 10.4064/cm130-2-9
Keywords: prove mathcal non meager p filter mathcal omega mathcal countable dense homogeneous spaces

Rodrigo Hernández-Gutiérrez 1 ; Michael Hrušák 1

1 Centro de Ciencias Matemáticas UNAM, A.P. 61-3 Xangari, Morelia, Michoacán, 58089, México
@article{10_4064_cm130_2_9,
     author = {Rodrigo Hern\'andez-Guti\'errez and Michael Hru\v{s}\'ak},
     title = {Non-meager $P$-filters are countable dense homogeneous},
     journal = {Colloquium Mathematicum},
     pages = {281--289},
     publisher = {mathdoc},
     volume = {130},
     number = {2},
     year = {2013},
     doi = {10.4064/cm130-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-9/}
}
TY  - JOUR
AU  - Rodrigo Hernández-Gutiérrez
AU  - Michael Hrušák
TI  - Non-meager $P$-filters are countable dense homogeneous
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 281
EP  - 289
VL  - 130
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-9/
DO  - 10.4064/cm130-2-9
LA  - en
ID  - 10_4064_cm130_2_9
ER  - 
%0 Journal Article
%A Rodrigo Hernández-Gutiérrez
%A Michael Hrušák
%T Non-meager $P$-filters are countable dense homogeneous
%J Colloquium Mathematicum
%D 2013
%P 281-289
%V 130
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-9/
%R 10.4064/cm130-2-9
%G en
%F 10_4064_cm130_2_9
Rodrigo Hernández-Gutiérrez; Michael Hrušák. Non-meager $P$-filters are countable dense homogeneous. Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 281-289. doi : 10.4064/cm130-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-9/

Cité par Sources :