Non-meager $P$-filters are countable dense homogeneous
Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 281-289
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if $\mathcal {F}$ is a non-meager $P$-filter, then both $\mathcal {F}$ and
${}^ \omega \mathcal {F}$ are countable dense homogeneous spaces.
Keywords:
prove mathcal non meager p filter mathcal omega mathcal countable dense homogeneous spaces
Affiliations des auteurs :
Rodrigo Hernández-Gutiérrez 1 ; Michael Hrušák 1
@article{10_4064_cm130_2_9,
author = {Rodrigo Hern\'andez-Guti\'errez and Michael Hru\v{s}\'ak},
title = {Non-meager $P$-filters are countable dense homogeneous},
journal = {Colloquium Mathematicum},
pages = {281--289},
publisher = {mathdoc},
volume = {130},
number = {2},
year = {2013},
doi = {10.4064/cm130-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-9/}
}
TY - JOUR AU - Rodrigo Hernández-Gutiérrez AU - Michael Hrušák TI - Non-meager $P$-filters are countable dense homogeneous JO - Colloquium Mathematicum PY - 2013 SP - 281 EP - 289 VL - 130 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-9/ DO - 10.4064/cm130-2-9 LA - en ID - 10_4064_cm130_2_9 ER -
%0 Journal Article %A Rodrigo Hernández-Gutiérrez %A Michael Hrušák %T Non-meager $P$-filters are countable dense homogeneous %J Colloquium Mathematicum %D 2013 %P 281-289 %V 130 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-9/ %R 10.4064/cm130-2-9 %G en %F 10_4064_cm130_2_9
Rodrigo Hernández-Gutiérrez; Michael Hrušák. Non-meager $P$-filters are countable dense homogeneous. Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 281-289. doi: 10.4064/cm130-2-9
Cité par Sources :