The existence of relative pure injective envelopes
Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 251-264.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathcal {S}$ be a class of finitely presented $R$-modules such that $R\in \mathcal {S}$ and $\mathcal {S}$ has a subset $\mathcal {S}^*$ with the property that for any $U\in \mathcal {S}$ there is a $U^*\in \mathcal {S}^*$ with $U^*\cong U.$ We show that the class of $\mathcal {S}$-pure injective $R$-modules is preenveloping. As an application, we deduce that the left global $\mathcal {S}$-pure projective dimension of $R$ is equal to its left global $\mathcal {S}$-pure injective dimension. As our main result, we prove that, in fact, the class of $\mathcal {S}$-pure injective $R$-modules is enveloping.
DOI : 10.4064/cm130-2-7
Keywords: mathcal class finitely presented r modules mathcal mathcal has subset mathcal * property mathcal there * mathcal * * cong class mathcal pure injective r modules preenveloping application deduce global mathcal pure projective dimension equal its global mathcal pure injective dimension main result prove class mathcal pure injective r modules enveloping

Fatemeh Zareh-Khoshchehreh 1 ; Kamran Divaani-Aazar 2

1 Department of Mathematics Alzahra University Vanak, Post Code 19834 Tehran, Iran
2 Department of Mathematics Alzahra University Vanak, Post Code 19834 Tehran, Iran and Institute for Studies in Theoretical Physics and Mathematics P.O. Box 19395-5746 Tehran, Iran
@article{10_4064_cm130_2_7,
     author = {Fatemeh Zareh-Khoshchehreh and Kamran Divaani-Aazar},
     title = {The existence of relative pure injective envelopes},
     journal = {Colloquium Mathematicum},
     pages = {251--264},
     publisher = {mathdoc},
     volume = {130},
     number = {2},
     year = {2013},
     doi = {10.4064/cm130-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-7/}
}
TY  - JOUR
AU  - Fatemeh Zareh-Khoshchehreh
AU  - Kamran Divaani-Aazar
TI  - The existence of relative pure injective envelopes
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 251
EP  - 264
VL  - 130
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-7/
DO  - 10.4064/cm130-2-7
LA  - en
ID  - 10_4064_cm130_2_7
ER  - 
%0 Journal Article
%A Fatemeh Zareh-Khoshchehreh
%A Kamran Divaani-Aazar
%T The existence of relative pure injective envelopes
%J Colloquium Mathematicum
%D 2013
%P 251-264
%V 130
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-7/
%R 10.4064/cm130-2-7
%G en
%F 10_4064_cm130_2_7
Fatemeh Zareh-Khoshchehreh; Kamran Divaani-Aazar. The existence of relative pure injective envelopes. Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 251-264. doi : 10.4064/cm130-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-7/

Cité par Sources :