The existence of relative pure injective envelopes
Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 251-264
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal {S}$ be a class of finitely presented $R$-modules such that $R\in \mathcal {S}$ and $\mathcal {S}$ has a subset $\mathcal {S}^*$ with the property that for any $U\in \mathcal {S}$ there is a $U^*\in \mathcal {S}^*$ with $U^*\cong U.$ We show that the class of $\mathcal {S}$-pure injective $R$-modules is preenveloping. As an application, we deduce that the left global $\mathcal {S}$-pure projective dimension of $R$ is equal to its left global $\mathcal {S}$-pure injective dimension. As our main result, we prove that, in fact, the class of $\mathcal {S}$-pure injective $R$-modules is enveloping.
Keywords:
mathcal class finitely presented r modules mathcal mathcal has subset mathcal * property mathcal there * mathcal * * cong class mathcal pure injective r modules preenveloping application deduce global mathcal pure projective dimension equal its global mathcal pure injective dimension main result prove class mathcal pure injective r modules enveloping
Affiliations des auteurs :
Fatemeh Zareh-Khoshchehreh 1 ; Kamran Divaani-Aazar 2
@article{10_4064_cm130_2_7,
author = {Fatemeh Zareh-Khoshchehreh and Kamran Divaani-Aazar},
title = {The existence of relative pure injective envelopes},
journal = {Colloquium Mathematicum},
pages = {251--264},
year = {2013},
volume = {130},
number = {2},
doi = {10.4064/cm130-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-7/}
}
TY - JOUR AU - Fatemeh Zareh-Khoshchehreh AU - Kamran Divaani-Aazar TI - The existence of relative pure injective envelopes JO - Colloquium Mathematicum PY - 2013 SP - 251 EP - 264 VL - 130 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-7/ DO - 10.4064/cm130-2-7 LA - en ID - 10_4064_cm130_2_7 ER -
Fatemeh Zareh-Khoshchehreh; Kamran Divaani-Aazar. The existence of relative pure injective envelopes. Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 251-264. doi: 10.4064/cm130-2-7
Cité par Sources :