$n$-Arc connected spaces
Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 221-240.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A space is $n$-arc connected ($n$-ac) if any family of no more than $n$-points are contained in an arc. For graphs the following are equivalent: (i) $7$-ac, (ii) $n$-ac for all $n$, (iii) continuous injective image of a closed subinterval of the real line, and (iv) one of a finite family of graphs. General continua that are $\aleph _0$-ac are characterized. The complexity of characterizing $n$-ac graphs for $n=2,3,4,5$ is determined to be strictly higher than that of the stated characterization of $7$-ac graphs.
DOI : 10.4064/cm130-2-5
Keywords: space n arc connected n ac family n points contained arc graphs following equivalent ac n ac iii continuous injective image closed subinterval real line finite family graphs general continua aleph ac characterized complexity characterizing n ac graphs determined strictly higher stated characterization ac graphs

Benjamin Espinoza 1 ; Paul Gartside 2 ; Ana Mamatelashvili 3

1 Department of Mathematics University of Pittsburgh at Greensburg 236 Frank A. Cassell Hall 150 Finoli Drive Greensburg, PA 15601, U.S.A.
2 Department of Mathematics University of Pittsburgh 508 Thackeray Hall Pittsburgh, PA 15260, U.S.A.
3 Department of Mathematics University of Pittsburgh 301 Thackeray Hall Pittsburgh, PA 15260, U.S.A.
@article{10_4064_cm130_2_5,
     author = {Benjamin Espinoza and Paul Gartside and Ana Mamatelashvili},
     title = {$n${-Arc} connected spaces},
     journal = {Colloquium Mathematicum},
     pages = {221--240},
     publisher = {mathdoc},
     volume = {130},
     number = {2},
     year = {2013},
     doi = {10.4064/cm130-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-5/}
}
TY  - JOUR
AU  - Benjamin Espinoza
AU  - Paul Gartside
AU  - Ana Mamatelashvili
TI  - $n$-Arc connected spaces
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 221
EP  - 240
VL  - 130
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-5/
DO  - 10.4064/cm130-2-5
LA  - en
ID  - 10_4064_cm130_2_5
ER  - 
%0 Journal Article
%A Benjamin Espinoza
%A Paul Gartside
%A Ana Mamatelashvili
%T $n$-Arc connected spaces
%J Colloquium Mathematicum
%D 2013
%P 221-240
%V 130
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-5/
%R 10.4064/cm130-2-5
%G en
%F 10_4064_cm130_2_5
Benjamin Espinoza; Paul Gartside; Ana Mamatelashvili. $n$-Arc connected spaces. Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 221-240. doi : 10.4064/cm130-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-5/

Cité par Sources :