Operator entropy inequalities
Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 159-168
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate a notion of relative operator entropy,
which develops the theory started by J. I. Fujii and E. Kamei [Math.
Japonica 34 (1989), 341–348]. For two finite sequences
$\mathbf{A}=(A_1,\ldots,A_n)$ and $\mathbf{B}=(B_1,\ldots,B_n)$ of
positive operators acting on a Hilbert space, a real number $q$ and
an operator monotone function $f$ we extend the concept of entropy
by setting
$$\def\mfrac#1#2{#1/#2}
S_q^f(\mathbf{A}\,|\,\mathbf{B}):=\sum_{j=1}^nA_j^{\mfrac{1}{2}}
(A_j^{-\mfrac{1}{2}}B_jA_j^{-\mfrac{1}{2}})^qf(A_j^{-\mfrac{1}{2}}B_jA_j^{-\mfrac{1}{2}})A_j^{\mfrac{1}{2}} ,
$$
and then give upper and lower bounds for
$S_q^f(\mathbf{A}\,|\,\mathbf{B})$ as an extension of an inequality due
to T. Furuta [Linear Algebra Appl. 381 (2004), 219–235] under
certain conditions. As an application, some inequalities concerning the
classical Shannon entropy are deduced.
Keywords:
investigate notion relative operator entropy which develops theory started fujii kamei math japonica finite sequences mathbf ldots mathbf ldots positive operators acting hilbert space real number operator monotone function extend concept entropy setting def mfrac mathbf mathbf sum mfrac mfrac mfrac mfrac mfrac mfrac upper lower bounds mathbf mathbf extension inequality due furuta linear algebra appl under certain conditions application inequalities concerning classical shannon entropy deduced
Affiliations des auteurs :
M. S. Moslehian 1 ; F. Mirzapour 2 ; A. Morassaei 2
@article{10_4064_cm130_2_2,
author = {M. S. Moslehian and F. Mirzapour and A. Morassaei},
title = {Operator entropy inequalities},
journal = {Colloquium Mathematicum},
pages = {159--168},
publisher = {mathdoc},
volume = {130},
number = {2},
year = {2013},
doi = {10.4064/cm130-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-2/}
}
TY - JOUR AU - M. S. Moslehian AU - F. Mirzapour AU - A. Morassaei TI - Operator entropy inequalities JO - Colloquium Mathematicum PY - 2013 SP - 159 EP - 168 VL - 130 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-2/ DO - 10.4064/cm130-2-2 LA - en ID - 10_4064_cm130_2_2 ER -
M. S. Moslehian; F. Mirzapour; A. Morassaei. Operator entropy inequalities. Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 159-168. doi: 10.4064/cm130-2-2
Cité par Sources :