Hermitian operators on $H^{\infty}_E$ and $S^{\infty}_{\mathcal{K}}$
Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 51-59
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A complete characterization of bounded and unbounded norm hermitian operators on $H^{\infty}_E$ is given for the case when $E$ is a complex Banach space with trivial multiplier algebra. As a consequence, the bi-circular projections on $\displaystyle H^{\infty}_E$ are determined. We also characterize a subclass of hermitian operators on $S^{\infty}_{\mathcal{K}}$ for $\mathcal{K}$ a complex Hilbert space.
Keywords:
complete characterization bounded unbounded norm hermitian operators infty given complex banach space trivial multiplier algebra consequence bi circular projections displaystyle infty determined characterize subclass hermitian operators infty mathcal mathcal complex hilbert space
Affiliations des auteurs :
James Jamison  1
@article{10_4064_cm130_1_5,
author = {James Jamison},
title = {Hermitian operators on $H^{\infty}_E$ and $S^{\infty}_{\mathcal{K}}$},
journal = {Colloquium Mathematicum},
pages = {51--59},
year = {2013},
volume = {130},
number = {1},
doi = {10.4064/cm130-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-5/}
}
James Jamison. Hermitian operators on $H^{\infty}_E$ and $S^{\infty}_{\mathcal{K}}$. Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 51-59. doi: 10.4064/cm130-1-5
Cité par Sources :