On the Lucas sequence equations $V_{n}=kV_{m}$ and $U_{n}=kU_{m}$
Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 27-38.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $P$ and $Q$ be nonzero integers. The sequences of generalized Fibonacci and Lucas numbers are defined by $U_{0}=0$, $U_{1}=1$ and $ U_{n+1}=PU_{n}-QU_{n-1}$ for $n\geq 1$, and $V_{0}=2$, $V_{1}=P$ and $ V_{n+1}=PV_{n}-QV_{n-1}$ for $n\geq 1$, respectively. In this paper, we assume that $P\geq 1$, $Q$ is odd, $(P,Q)=1$, $V_{m}\ne 1$, and $V_{r}\ne 1$. We show that there is no integer $x$ such that $V_{n}=V_{r}V_{m}x^{2}$ when $m\geq 1$ and $r$ is an even integer. Also we completely solve the equation $V_{n}=V_{m}V_{r}x^{2}$ for $m\geq 1$ and $r\geq 1$ when $Q\equiv 7\pmod{8}$ and $x$ is an even integer. Then we show that when $P\equiv 3\pmod{4}$ and $Q\equiv 1\pmod{4}$, the equation $V_{n}=V_{m}V_{r}x^{2}$ has no solutions for $% m\geq 1$ and $r\geq 1$. Moreover, we show that when $P>1$ and $Q=\pm 1$, there is no generalized Lucas number $V_{n}$ such that $V_{n}=V_{m}V_{r}$ for $m>1$ and $r>1$. Lastly, we show that there is no generalized Fibonacci number $U_{n}$ such that $U_{n}=U_{m}U_{r}$ for $Q=\pm 1$ and $1 r m$.
DOI : 10.4064/cm130-1-3
Keywords: nonzero integers sequences generalized fibonacci lucas numbers defined qu n geq qv n geq respectively paper assume geq odd there integer geq even integer completely solve equation geq geq equiv pmod even integer equiv pmod equiv pmod equation has solutions geq geq moreover there generalized lucas number lastly there generalized fibonacci number

Refik Keskin 1 ; Zafer Şiar 2

1 Department of Mathematics Sakarya University TR54187 Sakarya, Turkey
2 Department of Mathematics Bilecik Şeyh Edebali University TR11030 Bilecik, Turkey
@article{10_4064_cm130_1_3,
     author = {Refik Keskin and Zafer \c{S}iar},
     title = {On the {Lucas} sequence equations
 $V_{n}=kV_{m}$ and $U_{n}=kU_{m}$},
     journal = {Colloquium Mathematicum},
     pages = {27--38},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {2013},
     doi = {10.4064/cm130-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-3/}
}
TY  - JOUR
AU  - Refik Keskin
AU  - Zafer Şiar
TI  - On the Lucas sequence equations
 $V_{n}=kV_{m}$ and $U_{n}=kU_{m}$
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 27
EP  - 38
VL  - 130
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-3/
DO  - 10.4064/cm130-1-3
LA  - en
ID  - 10_4064_cm130_1_3
ER  - 
%0 Journal Article
%A Refik Keskin
%A Zafer Şiar
%T On the Lucas sequence equations
 $V_{n}=kV_{m}$ and $U_{n}=kU_{m}$
%J Colloquium Mathematicum
%D 2013
%P 27-38
%V 130
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-3/
%R 10.4064/cm130-1-3
%G en
%F 10_4064_cm130_1_3
Refik Keskin; Zafer Şiar. On the Lucas sequence equations
 $V_{n}=kV_{m}$ and $U_{n}=kU_{m}$. Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 27-38. doi : 10.4064/cm130-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-3/

Cité par Sources :