On the Lucas sequence equations
$V_{n}=kV_{m}$ and $U_{n}=kU_{m}$
Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 27-38
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $P$ and $Q$ be nonzero integers. The sequences of generalized Fibonacci
and Lucas numbers are defined by $U_{0}=0$, $U_{1}=1$ and $
U_{n+1}=PU_{n}-QU_{n-1}$ for $n\geq 1$, and $V_{0}=2$, $V_{1}=P$ and $
V_{n+1}=PV_{n}-QV_{n-1}$ for $n\geq 1$, respectively. In this paper, we
assume that $P\geq 1$, $Q$ is odd, $(P,Q)=1$, $V_{m}\ne 1$, and $V_{r}\ne 1$. We show that there is no
integer $x$ such that $V_{n}=V_{r}V_{m}x^{2}$ when $m\geq 1$ and $r$ is an
even integer. Also we completely solve the equation $V_{n}=V_{m}V_{r}x^{2}$
for $m\geq 1$ and $r\geq 1$ when $Q\equiv 7\pmod{8}$ and $x$ is an even
integer. Then we show that when $P\equiv 3\pmod{4}$ and $Q\equiv 1\pmod{4}$, the equation $V_{n}=V_{m}V_{r}x^{2}$ has no solutions for $%
m\geq 1$ and $r\geq 1$. Moreover, we show that when $P>1$ and $Q=\pm 1$,
there is no generalized Lucas number $V_{n}$ such that $V_{n}=V_{m}V_{r}$
for $m>1$ and $r>1$. Lastly, we show that there is no generalized Fibonacci
number $U_{n}$ such that $U_{n}=U_{m}U_{r}$ for $Q=\pm 1$ and $1 r m$.
Keywords:
nonzero integers sequences generalized fibonacci lucas numbers defined qu n geq qv n geq respectively paper assume geq odd there integer geq even integer completely solve equation geq geq equiv pmod even integer equiv pmod equiv pmod equation has solutions geq geq moreover there generalized lucas number lastly there generalized fibonacci number
Affiliations des auteurs :
Refik Keskin 1 ; Zafer Şiar 2
@article{10_4064_cm130_1_3,
author = {Refik Keskin and Zafer \c{S}iar},
title = {On the {Lucas} sequence equations
$V_{n}=kV_{m}$ and $U_{n}=kU_{m}$},
journal = {Colloquium Mathematicum},
pages = {27--38},
publisher = {mathdoc},
volume = {130},
number = {1},
year = {2013},
doi = {10.4064/cm130-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-3/}
}
TY - JOUR
AU - Refik Keskin
AU - Zafer Şiar
TI - On the Lucas sequence equations
$V_{n}=kV_{m}$ and $U_{n}=kU_{m}$
JO - Colloquium Mathematicum
PY - 2013
SP - 27
EP - 38
VL - 130
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-3/
DO - 10.4064/cm130-1-3
LA - en
ID - 10_4064_cm130_1_3
ER -
Refik Keskin; Zafer Şiar. On the Lucas sequence equations
$V_{n}=kV_{m}$ and $U_{n}=kU_{m}$. Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 27-38. doi: 10.4064/cm130-1-3
Cité par Sources :