Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra
Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 19-26.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that if $G$ is a weakly amenable unimodular group then the Banach algebra $A_p^r(G)=A_p\cap L^r(G)$, where $A_p(G)$ is the Figà-Talamanca–Herz Banach algebra of $G$, is a dual Banach space with the Radon–Nikodym property if $1\leq r\leq \max(p,p')$. This does not hold if $p=2$ and $r>2$.
DOI : 10.4064/cm130-1-2
Keywords: shown weakly amenable unimodular group banach algebra g cap where fig talamanca herz banach algebra dual banach space radon nikodym property leq leq max does

Edmond E. Granirer 1

1 Department of Mathematics University of British Columbia Vancouver, B.C., Canada
@article{10_4064_cm130_1_2,
     author = {Edmond E. Granirer},
     title = {Weakly amenable groups and the {RNP} for some {Banach} algebras related to the {Fourier} algebra},
     journal = {Colloquium Mathematicum},
     pages = {19--26},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {2013},
     doi = {10.4064/cm130-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-2/}
}
TY  - JOUR
AU  - Edmond E. Granirer
TI  - Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 19
EP  - 26
VL  - 130
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-2/
DO  - 10.4064/cm130-1-2
LA  - en
ID  - 10_4064_cm130_1_2
ER  - 
%0 Journal Article
%A Edmond E. Granirer
%T Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra
%J Colloquium Mathematicum
%D 2013
%P 19-26
%V 130
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-2/
%R 10.4064/cm130-1-2
%G en
%F 10_4064_cm130_1_2
Edmond E. Granirer. Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra. Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 19-26. doi : 10.4064/cm130-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-2/

Cité par Sources :