Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra
Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 19-26
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that if $G$ is a weakly amenable unimodular group then the Banach algebra $A_p^r(G)=A_p\cap L^r(G)$, where $A_p(G)$ is the Figà-Talamanca–Herz Banach algebra of $G$, is a dual Banach space with the Radon–Nikodym property if $1\leq r\leq \max(p,p')$. This does not hold if $p=2$ and $r>2$.
Keywords:
shown weakly amenable unimodular group banach algebra g cap where fig talamanca herz banach algebra dual banach space radon nikodym property leq leq max does
Affiliations des auteurs :
Edmond E. Granirer 1
@article{10_4064_cm130_1_2,
author = {Edmond E. Granirer},
title = {Weakly amenable groups and the {RNP} for some {Banach} algebras related to the {Fourier} algebra},
journal = {Colloquium Mathematicum},
pages = {19--26},
publisher = {mathdoc},
volume = {130},
number = {1},
year = {2013},
doi = {10.4064/cm130-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-2/}
}
TY - JOUR AU - Edmond E. Granirer TI - Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra JO - Colloquium Mathematicum PY - 2013 SP - 19 EP - 26 VL - 130 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-2/ DO - 10.4064/cm130-1-2 LA - en ID - 10_4064_cm130_1_2 ER -
%0 Journal Article %A Edmond E. Granirer %T Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra %J Colloquium Mathematicum %D 2013 %P 19-26 %V 130 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-2/ %R 10.4064/cm130-1-2 %G en %F 10_4064_cm130_1_2
Edmond E. Granirer. Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra. Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 19-26. doi: 10.4064/cm130-1-2
Cité par Sources :