Logarithmic inequalities for second-order Riesz transforms and related Fourier multipliers
Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 103-126.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study logarithmic estimates for a class of Fourier multipliers which arise from a nonsymmetric modulation of jumps of Lévy processes. In particular, this leads to corresponding tight bounds for second-order Riesz transforms on $\mathbb{R}^d$.
DOI : 10.4064/cm130-1-10
Keywords: study logarithmic estimates class fourier multipliers which arise nonsymmetric modulation jumps processes particular leads corresponding tight bounds second order riesz transforms mathbb

Adam Osękowski 1

1 Department of Mathematics Informatics and Mechanics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_cm130_1_10,
     author = {Adam Os\k{e}kowski},
     title = {Logarithmic inequalities  for 
 second-order {Riesz} transforms and related {Fourier} multipliers},
     journal = {Colloquium Mathematicum},
     pages = {103--126},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {2013},
     doi = {10.4064/cm130-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-10/}
}
TY  - JOUR
AU  - Adam Osękowski
TI  - Logarithmic inequalities  for 
 second-order Riesz transforms and related Fourier multipliers
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 103
EP  - 126
VL  - 130
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-10/
DO  - 10.4064/cm130-1-10
LA  - en
ID  - 10_4064_cm130_1_10
ER  - 
%0 Journal Article
%A Adam Osękowski
%T Logarithmic inequalities  for 
 second-order Riesz transforms and related Fourier multipliers
%J Colloquium Mathematicum
%D 2013
%P 103-126
%V 130
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-10/
%R 10.4064/cm130-1-10
%G en
%F 10_4064_cm130_1_10
Adam Osękowski. Logarithmic inequalities  for 
 second-order Riesz transforms and related Fourier multipliers. Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 103-126. doi : 10.4064/cm130-1-10. http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-10/

Cité par Sources :