Explicit fundamental solutions of some second order differential operators on Heisenberg groups
Colloquium Mathematicum, Tome 129 (2012) no. 2, pp. 263-288
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $p,q,n$ be natural numbers such that $p+q=n$. Let $\mathbb F$ be either $\mathbb C$, the complex numbers field, or $\mathbb H$, the quaternionic division algebra.
We consider the Heisenberg group $N(p,q,\mathbb F)$ defined
$\mathbb F^{n}\times \mathop{\mathfrak{Im}}\nolimits \mathbb F$, with group law given by
$$
(v,\zeta)(v',\zeta')=\biggl( v+v', \zeta+\zeta'-{\frac{1}{2}} \mathop{\mathfrak{Im}}\nolimits B(v,v') \biggr),
$$
where $B(v,w)=\sum_{j=1}^{p} v_{j}\overline{w_{j}} - \sum_{j=p+1}^{n} v_{j}\overline{w_{j}}$. Let $U(p,q,\mathbb F)$ be the group of $n\times n$ matrices with coefficients in $\mathbb F$ that leave the form $B$ invariant. We compute explicit fundamental solutions of some second order differential operators on $N(p,q,\mathbb F)$ which are canonically associated to the action of $U(p,q,\mathbb F)$.
Keywords:
natural numbers mathbb either mathbb complex numbers field mathbb quaternionic division algebra consider heisenberg group mathbb defined mathbb times mathop mathfrak nolimits mathbb group law given zeta zeta biggl zeta zeta frac mathop mathfrak nolimits biggr where sum overline sum overline mathbb group times matrices coefficients mathbb leave form invariant compute explicit fundamental solutions second order differential operators mathbb which canonically associated action mathbb
Affiliations des auteurs :
Isolda Cardoso 1 ; Linda Saal 2
@article{10_4064_cm129_2_7,
author = {Isolda Cardoso and Linda Saal},
title = {Explicit fundamental solutions of some second order differential operators on {Heisenberg} groups},
journal = {Colloquium Mathematicum},
pages = {263--288},
publisher = {mathdoc},
volume = {129},
number = {2},
year = {2012},
doi = {10.4064/cm129-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm129-2-7/}
}
TY - JOUR AU - Isolda Cardoso AU - Linda Saal TI - Explicit fundamental solutions of some second order differential operators on Heisenberg groups JO - Colloquium Mathematicum PY - 2012 SP - 263 EP - 288 VL - 129 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm129-2-7/ DO - 10.4064/cm129-2-7 LA - en ID - 10_4064_cm129_2_7 ER -
%0 Journal Article %A Isolda Cardoso %A Linda Saal %T Explicit fundamental solutions of some second order differential operators on Heisenberg groups %J Colloquium Mathematicum %D 2012 %P 263-288 %V 129 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm129-2-7/ %R 10.4064/cm129-2-7 %G en %F 10_4064_cm129_2_7
Isolda Cardoso; Linda Saal. Explicit fundamental solutions of some second order differential operators on Heisenberg groups. Colloquium Mathematicum, Tome 129 (2012) no. 2, pp. 263-288. doi: 10.4064/cm129-2-7
Cité par Sources :