Explicit fundamental solutions of some second order differential operators on Heisenberg groups
Colloquium Mathematicum, Tome 129 (2012) no. 2, pp. 263-288.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p,q,n$ be natural numbers such that $p+q=n$. Let $\mathbb F$ be either $\mathbb C$, the complex numbers field, or $\mathbb H$, the quaternionic division algebra. We consider the Heisenberg group $N(p,q,\mathbb F)$ defined $\mathbb F^{n}\times \mathop{\mathfrak{Im}}\nolimits \mathbb F$, with group law given by $$ (v,\zeta)(v',\zeta')=\biggl( v+v', \zeta+\zeta'-{\frac{1}{2}} \mathop{\mathfrak{Im}}\nolimits B(v,v') \biggr), $$ where $B(v,w)=\sum_{j=1}^{p} v_{j}\overline{w_{j}} - \sum_{j=p+1}^{n} v_{j}\overline{w_{j}}$. Let $U(p,q,\mathbb F)$ be the group of $n\times n$ matrices with coefficients in $\mathbb F$ that leave the form $B$ invariant. We compute explicit fundamental solutions of some second order differential operators on $N(p,q,\mathbb F)$ which are canonically associated to the action of $U(p,q,\mathbb F)$.
DOI : 10.4064/cm129-2-7
Keywords: natural numbers mathbb either mathbb complex numbers field mathbb quaternionic division algebra consider heisenberg group mathbb defined mathbb times mathop mathfrak nolimits mathbb group law given zeta zeta biggl zeta zeta frac mathop mathfrak nolimits biggr where sum overline sum overline mathbb group times matrices coefficients mathbb leave form invariant compute explicit fundamental solutions second order differential operators mathbb which canonically associated action mathbb

Isolda Cardoso 1 ; Linda Saal 2

1 ECEN-FCEIA Universidad Nacional de Rosario Pellegrini 250 2000 Rosario, Argentina
2 FAMAF Universidad Nacional de Córdoba Ciudad Universitaria 5000 Córdoba, Argentina
@article{10_4064_cm129_2_7,
     author = {Isolda  Cardoso and Linda Saal},
     title = {Explicit fundamental solutions of some second order differential operators on {Heisenberg} groups},
     journal = {Colloquium Mathematicum},
     pages = {263--288},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {2012},
     doi = {10.4064/cm129-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm129-2-7/}
}
TY  - JOUR
AU  - Isolda  Cardoso
AU  - Linda Saal
TI  - Explicit fundamental solutions of some second order differential operators on Heisenberg groups
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 263
EP  - 288
VL  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm129-2-7/
DO  - 10.4064/cm129-2-7
LA  - en
ID  - 10_4064_cm129_2_7
ER  - 
%0 Journal Article
%A Isolda  Cardoso
%A Linda Saal
%T Explicit fundamental solutions of some second order differential operators on Heisenberg groups
%J Colloquium Mathematicum
%D 2012
%P 263-288
%V 129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm129-2-7/
%R 10.4064/cm129-2-7
%G en
%F 10_4064_cm129_2_7
Isolda  Cardoso; Linda Saal. Explicit fundamental solutions of some second order differential operators on Heisenberg groups. Colloquium Mathematicum, Tome 129 (2012) no. 2, pp. 263-288. doi : 10.4064/cm129-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm129-2-7/

Cité par Sources :