Finite groups of OTP projective representation type over a complete discrete valuation domain of positive characteristic
Colloquium Mathematicum, Tome 129 (2012) no. 2, pp. 173-187
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $S$ be a commutative complete discrete valuation domain of positive characteristic $p$, $S^*$ the unit group of $S$, $\varOmega $ a subgroup of $S^*$ and $G=G_p\times B$ a finite group, where $G_p$ is a $p$-group and $B$ is a $p'$-group. Denote by $S^\lambda G$ the twisted group algebra of $G$ over $S$ with a $2$-cocycle $\lambda \in Z^2(G,S^*)$. For $\varOmega $ satisfying a specific condition, we give necessary and sufficient conditions for $G$ to be of OTP projective $(S,\varOmega )$-representation type, in the sense that there exists a cocycle $\lambda \in Z^2(G,\varOmega )$ such that every indecomposable $S^\lambda G$-module is isomorphic to the outer tensor product $V\mathbin {\#} W$ of an indecomposable $S^\lambda G_p$-module $V$ and an irreducible $S^\lambda B$-module $W$.
Keywords:
commutative complete discrete valuation domain positive characteristic * unit group varomega subgroup * times finite group where p group p group denote lambda twisted group algebra cocycle lambda * varomega satisfying specific condition necessary sufficient conditions otp projective varomega representation type sense there exists cocycle lambda varomega every indecomposable lambda g module isomorphic outer tensor product mathbin indecomposable lambda p module irreducible lambda b module
Affiliations des auteurs :
Leonid F. Barannyk 1 ; Dariusz Klein 1
@article{10_4064_cm129_2_2,
author = {Leonid F. Barannyk and Dariusz Klein},
title = {Finite groups of {OTP} projective representation type over a complete discrete valuation domain of positive characteristic},
journal = {Colloquium Mathematicum},
pages = {173--187},
publisher = {mathdoc},
volume = {129},
number = {2},
year = {2012},
doi = {10.4064/cm129-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm129-2-2/}
}
TY - JOUR AU - Leonid F. Barannyk AU - Dariusz Klein TI - Finite groups of OTP projective representation type over a complete discrete valuation domain of positive characteristic JO - Colloquium Mathematicum PY - 2012 SP - 173 EP - 187 VL - 129 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm129-2-2/ DO - 10.4064/cm129-2-2 LA - en ID - 10_4064_cm129_2_2 ER -
%0 Journal Article %A Leonid F. Barannyk %A Dariusz Klein %T Finite groups of OTP projective representation type over a complete discrete valuation domain of positive characteristic %J Colloquium Mathematicum %D 2012 %P 173-187 %V 129 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm129-2-2/ %R 10.4064/cm129-2-2 %G en %F 10_4064_cm129_2_2
Leonid F. Barannyk; Dariusz Klein. Finite groups of OTP projective representation type over a complete discrete valuation domain of positive characteristic. Colloquium Mathematicum, Tome 129 (2012) no. 2, pp. 173-187. doi: 10.4064/cm129-2-2
Cité par Sources :