Strongly invariant means on commutative hypergroups
Colloquium Mathematicum, Tome 129 (2012) no. 1, pp. 119-131
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce and study strongly invariant means $m$ on commutative hypergroups, $m(T_x\varphi \cdot \psi)=m(\varphi \cdot T_{\tilde{x}}\psi)$, $x \in K$, $\varphi,\psi \in L^\infty(K)$.
We show that the existence of such means is equivalent to a strong Reiter condition.
For polynomial hypergroups we derive a growth condition for the Haar weights which is equivalent to the existence of strongly invariant means. We apply this characterization to show that there are commutative hypergroups which do not possess strongly invariant means.
Keywords:
introduce study strongly invariant means commutative hypergroups varphi cdot psi varphi cdot tilde psi varphi psi infty existence means equivalent strong reiter condition polynomial hypergroups derive growth condition haar weights which equivalent existence strongly invariant means apply characterization there commutative hypergroups which possess strongly invariant means
Affiliations des auteurs :
Rupert Lasser 1 ; Josef Obermaier 2
@article{10_4064_cm129_1_9,
author = {Rupert Lasser and Josef Obermaier},
title = {Strongly invariant means on commutative hypergroups},
journal = {Colloquium Mathematicum},
pages = {119--131},
publisher = {mathdoc},
volume = {129},
number = {1},
year = {2012},
doi = {10.4064/cm129-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-9/}
}
TY - JOUR AU - Rupert Lasser AU - Josef Obermaier TI - Strongly invariant means on commutative hypergroups JO - Colloquium Mathematicum PY - 2012 SP - 119 EP - 131 VL - 129 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-9/ DO - 10.4064/cm129-1-9 LA - en ID - 10_4064_cm129_1_9 ER -
Rupert Lasser; Josef Obermaier. Strongly invariant means on commutative hypergroups. Colloquium Mathematicum, Tome 129 (2012) no. 1, pp. 119-131. doi: 10.4064/cm129-1-9
Cité par Sources :